gaussian势能曲面扫描最后一行文献综述怎么写写

扫扫二维码,随身浏览文档
手机或平板扫扫即可继续访问
gaussian的介绍.ppt
举报该文档为侵权文档。
举报该文档含有违规或不良信息。
反馈该文档无法正常浏览。
举报该文档为重复文档。
推荐理由:
将文档分享至:
分享完整地址
文档地址:
粘贴到BBS或博客
flash地址:
支持嵌入FLASH地址的网站使用
html代码:
&embed src='/DocinViewer-4.swf' width='100%' height='600' type=application/x-shockwave-flash ALLOWFULLSCREEN='true' ALLOWSCRIPTACCESS='always'&&/embed&
450px*300px480px*400px650px*490px
支持嵌入HTML代码的网站使用
您的内容已经提交成功
您所提交的内容需要审核后才能发布,请您等待!
3秒自动关闭窗口理论计算化学中的PES_百度百科
关闭特色百科用户权威合作手机百科 收藏 查看&理论计算化学中的PES本词条缺少名片图,补充相关内容使词条更完整,还能快速升级,赶紧来吧!
英文全称是Potential Energy Surface Scanning,翻译成中文就是扫描。它是一种应用于物理化学理论计算方面的一个重要的方法。外文名Potential Energy Surface Scanning应&&&&用物理化学理论计算
PES英文全称是Potential Energy Surface Scanning,翻译成中文就是势能面扫描。它是一种应用于物理化学理论计算方面的一个重要的方法。PES方法是理论当中的一个重要的应用手段,主要用于测算分析一种分子或一组分子在反应过程中是否有过渡态产生。在测算分析数据后导入origin之后会做出一种势能扫描图,也可以在GaussianView当中通过查看Result中的Scan观测曲线变化。通过观测曲线图,看在势能面扫描图中是否存在最大值,如果存在,则最大值处理论上应该存在过渡态分子,若随着键长的变化,势能面扫描曲线呈现收敛最后接近于水平,则说明分子在反应中不存在最大值,不存在过渡态。
对于势能面扫描的具体做法是在GaussianView当中点击View中的Lable,编辑分子中原子的序号,选择你想要使键长不断增大的两个原子的序号,并且查看一下两个原子之间的键长。然后进行扫描。具体如何操作可参考Gaussian09和Gaussian03手册,以及密度泛函理论和计算化学。在百度上都可以搜索到相关的理论,也可以去书店搜索相应的计算化学、物理化学、结构化学方面的书籍。
新手上路我有疑问投诉建议参考资料 查看扫扫二维码,随身浏览文档
手机或平板扫扫即可继续访问
GAUSSIAN03处理激发态
举报该文档为侵权文档。
举报该文档含有违规或不良信息。
反馈该文档无法正常浏览。
举报该文档为重复文档。
推荐理由:
将文档分享至:
分享完整地址
文档地址:
粘贴到BBS或博客
flash地址:
支持嵌入FLASH地址的网站使用
html代码:
&embed src='/DocinViewer-.swf' width='100%' height='600' type=application/x-shockwave-flash ALLOWFULLSCREEN='true' ALLOWSCRIPTACCESS='always'&&/embed&
450px*300px480px*400px650px*490px
支持嵌入HTML代码的网站使用
您的内容已经提交成功
您所提交的内容需要审核后才能发布,请您等待!
3秒自动关闭窗口环境科学高级建模方法(第6-1节)-Gaussian-输入_百度文库
两大类热门资源免费畅读
续费一年阅读会员,立省24元!
文档贡献者
评价文档:
环境科学高级建模方法(第6-1节)-Gaussian-输入
把文档贴到Blog、BBS或个人站等:
普通尺寸(450*500pix)
较大尺寸(630*500pix)
大小:2.85MB
登录百度文库,专享文档复制特权,财富值每天免费拿!
你可能喜欢Gaussian简介_什么是Gaussian_Gaussian指什么_Gaussian拼音、示例、用法、来源
&&&& Gaussian
Gaussian目录
gaussian -基本介绍高斯功能:分子能量和结构过渡态能量和结构键和反应能量分子轨道多重矩原子电荷和电势振动频率红外和拉曼光谱核磁性质极化率和超极化率热力学性质反应路径计算可以对体系的基态或激发态执行。可以预测周期体系的能量,结构和分子轨道。因此,Gaussian可以作为功能强大的工具,用于研究许多化学领域的课题,例如取代基的影响,化学反应机理,势能曲面和激发能等等。
gaussian -关于gaussian 03 的介绍是Gaussian系列电子结构程序的最新版本。它在化学、化工、生物化学、物理化学等化学相关领域方面的功能都进行了增强。 1.研究大分子的反应和光谱Gaussian 03对ONIOM做了重大修改,能够处理更大的分子(例如,酶),可以研究有机体系的反应机制,表面和表面反应的团簇模型,有机物光化学过程,有机和有机金属化合物的取代影响和反应,以及均相催化作用等。ONIOM的其它新功能还有:定制分子力学力场;高效的ONIOM频率计算;ONIOM对电、磁性质的计算。 2.通过自旋-自旋耦合常数确定构像当没有X-射线结构可以利用时,研究新化合物的构像是相当困难的。NMR光谱的磁屏蔽数据提供了分子中各原子之间的连接信息。自旋-自旋耦合常数可用来帮助识别分子的特定构像,因为它们依赖于分子结构的扭转角。除了以前版本提供的NMR屏蔽和化学位移以外,Gaussian 03还能预测自旋-自旋耦合常数。通过对不同构像计算这些常数,并对预测的和观测的光谱做比较,可以识别观测到的特定构像。另外,归属观测的峰值到特定的原子也比较容易。 3.研究周期性体系Gaussian 03扩展了化学体系的研究范围,它可以用周期性边界条件的方法(PBC)模拟周期性体系,例如聚合物和晶体。PBC技术把体系作为重复的单元进行模拟,以确定化合物的结构和整体性质。例如,Gaussian 03可以预测聚合物的平衡结构和过渡结构。通过计算异构能量,反应能量等,它还可以研究聚合物的反应,包括分解,降解,燃烧等。Gaussian 03还可以模拟化合物的能带隙。PBC的其它功能还有:(1) 二维PBC方法可以模拟表面化学,例如在表面和晶体上的反应。用同样的基组,Hartree-Fock或DFT理论方法还可以用表面模型或团簇模型研究相同的问题。Gaussian 03使得对研究的问题可以选择合适的近似方法,而不是使问题满足于模块的能力极限。(2) 三维PBC:预测晶体以及其它三维周期体系的结构和整体性质。 4.预测光谱Gaussian 03可以计算各种光谱和光谱特性。包括:IR和Raman;预共振Raman;紫外-可见;NMR;振动圆形二色性(VCD);电子圆形二色性(ECD);旋光色散(ORD);谐性振-转耦合;非谐性振动及振-转耦合;g张量以及其它的超精细光谱张量。 5.模拟在反应和分子特性中溶剂的影响在气相和在溶液之间,分子特性和化学反应经常变化很大。例如,低位构像在气相和在(不同溶剂的)溶液中,具有完全不同的能量,构像的平衡结构也不同,化学反应具有不同的路径。Gaussian 03提供极化连续介质模型(PCM),用于模拟溶液体系。这个方法把溶剂描述为极化的连续介质,并把溶质放入溶剂间的空穴中。Gaussian 03的PCM功能包含了许多重大的改进,扩展了研究问题的范围:可以计算溶剂中的激发能,以及激发态的有关特性;NMR以及其它的磁性能;用能量的解析二级导数计算振动频率,IR和Raman光谱,以及其它特性;极化率和超极划率;执行性能上的改善。 G03W的界面和G98W相比,没有什么变化,G98W的用户不需要重新熟悉界面。
gaussian -主要功能Gaussian 03新增加了以下内容: 新的量子化学方法(1) ONIOM模块做了增强对ONIOM(MO:MM)计算支持电子嵌入,可以在QM区域的计算中考虑MM区域的电特性。通过算法的改善,ONIOM(MO:MM)对大分子(如蛋白质)的优化更快,结果更可靠。ONIOM(MO:MM)能够计算解析频率,ONIOM(MO:MO)的频率计算更快。提供对一般分子力场(MM)的支持,包括读入和修改参数。包含了独立的MM优化程序。支持任何ONIOM模拟的外部程序。(2) 修改和增强了溶剂模块改善和增强了连续介质模型(PCM):默认是IEFPCM模型,解析频率计算可以用于SCRF方法。此外改善了空穴生成技术。模拟溶液中的很多特性。可以对Klamt的COSMO-RS程序产生输入,通过统计力学方法,用于计算溶解能,配分系数,蒸汽压,以及其它整体性质。(3) 周期性边界条件(PBC)增加了PBC模块,用于研究周期体系,例如聚合物,表面,和晶体。PBC模块可以对一维、二维或三维重复性分子或波函求解具有边界条件的Schrodinger方程。周期体系可以用HF和DFT研究能量和梯度;(4) 分子动力学方法动力学计算可以定性地了解反应机制和定量地了解反应产物分布。计算包含两个主要近似:Born-Oppenheimer分子动力学(BOMD), 对势能曲面的局域二次近似计算经典轨迹。计算用Hessian算法预测和校正走步,较以前的计算在步长上能够改善10倍以上。还可以使用解析二级导数,BOMD能够用于所有具有解析梯度的理论方法。提供原子中心密度矩阵传播(ADMP)分子动力学方法,用于Hartree-Fock和DFT。吸取了Car和Parrinello的经验,ADMP传递电子自由度,而不是求解每个核结构的SCF方程。与Car-Parrinello不同之处在于,ADMP传递密度矩阵而不是MO。如果使用了原子中心基组,执行效率会更高。这一方法解决了Car-Parrinello存在的一些限制,例如,不再需要用D代替H以获得能量守恒,纯DFT和混合DFT均可使用。ADMP也可以在溶剂存在的情况下执行,ADMP可以用于ONIOM(MO:MM)计算。(5) 激发态激发态计算方面做了增强:由于改善了在完全组态相互作用计算中求解CI矢量的算法,提高了CASSCF执行效率。对能量和梯度计算可以使用约14个轨道(频率计算仍是8个)。限制活性空间(RAS)的SCF方法。RASSCF把分子轨道分成五个部分:最低的占据轨道(计算中作为非活性轨道考虑),计算中作为双占据的RAS1空间,包含对所研究问题非常重要分子轨道的RAS2空间,弱占据的RAS3空间,以及未占据轨道(计算中做冻结处理)。因此,CASSCF在RAS计算中分成三个部分,考虑的组态通过定义RAS1空间允许的最少电子数和RAS3空间允许的最多电子数,以及三个RAS空间电子总数来产生。NBO轨道可用于定义CAS和RAS活性空间。对于对应成键/孤对电子的反键轨道可以提供相当好的初始猜测。对称性匹配簇/组态相互作用(SAC-CI)方法,用于有机体系激发态的高精度计算,研究两个或更多电子激发的过程(例如电离谱的扰动),以及其它的问题。CIS,TD-HF和TD-DFT的激发态计算中可以考虑溶剂影响。 新的分子特性(1) 自旋-自旋耦合常数,用于辅助识别磁谱的构像。(2) g张量以及其它的超精细光谱张量,包括核电四次常数,转动常数,四次离心畸变项,电子自旋转动项,核自旋转动项,偶极超精细项,以及Fermi接触项。所有的张量可以输出到Pickett的拟合与光谱分析程序。(3) 谐性振-转耦合常数。分子的光谱特性依赖于分子振、转模式的耦合。可用于分析转动谱。(4) 非谐性振动及振-转耦合。通过使用微扰理论,更高级的项可以包含到频率计算中,以产生更精确的结果。(5) 预共振Raman光谱,可以产生基态结构,原子间连接,以及振动态的信息。(6) 旋光性以及旋光色散,通过GIAO计算,用于识别手性体系的异构体。(7) 电子圆二色性(ECD)。这一特性是光学活性分子在可见-紫外区域的差异吸收,用于归属绝对构型。预测的光谱还可用于解释已存在的ECD数据和归属峰位,(8) 含频极化和超极化,用于研究材料的分子特性随入射光波长的变化。(9) 用量度无关原子轨道(GIAO)方法计算磁化率,它类似于电极化率,用于研究分子的顺磁/反磁特性。(10) 预测气相和在溶剂中的电、磁特性和光谱。(11) ONIOM预测电、磁特性。 新增加的基本算法(1) 更好的初始轨道猜测。Gaussian 03使用Harris泛函产生初始猜测。这个泛函是对DFT非迭代的近似,它产生的初始轨道比Gaussian 98要好,例如,对有机体系有所改善,对金属体系有明显改善。(2) 新的SCF收敛算法,几乎可以解决以前所有的收敛问题。对于其它极少数的不收敛情况,Gaussian 03提供了Fermi展宽和阻尼方法。(3) 纯DFT计算的密度拟合近似。这一近似在计算库仑相互作用时,把密度用一组原子中心函数展开,而不是计算全部的双电子积分。它用线性换算的算法,对中等体系的纯DFT计算可以极大地提高计算效率,而又不损失多少精度。Gaussian 03可以对AO基自动产生合适的拟合基,也可以选择内置的拟合基。(4) 更快的自动FMM方法,用于适中的体系(纯DFT约100个原子,混合DFT约150个原子)。(5) 对纯DFT使用更快的库仑能算法,节省库仑问题的CPU时间。(6) O(N)更精确的交换能量项。在Hartree-Fock和DFT计算中,通过删除密度矩阵的零值项来屏蔽精确的交换贡献。这可以节省时间,而又不损失精度。 新增功能:(1) 新的密度泛函:OPTX交换,PBE和B95相关,VSXC和HCTH纯泛函,B1及其变体B98,B97-1,B97-2,PBE1PBE混合泛函。(2) 高精度能量方法:G3及其变体,W1方法。另外还包含W1BD,它用BD代替耦合簇,比CBS-QB3和G3更精确,当然计算也更加昂贵。(3) 对重元素全电子基组计算的Douglas-Kroll-Hess标量相对论修正,用于当ECP基组不能满足精度的情况。(4) 逼近基组极限的UGBS基组。相关词条
Copyright&&()}

我要回帖

更多关于 duang怎么写 的文章

更多推荐

版权声明:文章内容来源于网络,版权归原作者所有,如有侵权请点击这里与我们联系,我们将及时删除。

点击添加站长微信