元素的标准电极电势图A-B-C-D中,若EBC<EAB,则B不可能发生歧化已知反应A+B=C+D

一电极电势的产生 — 双电层理論

theory)解释电极电势的产生的原因。当金属放入溶液中时一方面金属晶体中处于热运动的金属离子在极性水分子的作用下,离开金属表面進入溶液金属性质愈活泼,这种趋势就愈大;另一方面溶液中的金属离子由于受到金属表面电子的吸引,而在金属表面沉积溶液中金属离子的浓度愈大,这种趋势也愈大在一定浓度的溶液中达到平衡后,在金属和溶液两相界面上形成了一个带相反电荷的双电层(electron double layer)双電层的厚度虽然很小(约为10-8厘米数量级), 但却在金属和溶液之间产生了电势差。通常人们就把产生在金属和盐溶液之间的双电层间的电势差称為金属的电极电势(electrode potential)并以此描述电极得失电子能力的相对强弱。电极电势以符号E Mn+/ M表示, 单位为V(伏) 如锌的电极电势以EZn2+/ Zn 表示, 铜的电极电势鉯ECu2+/Cu 表示。

电极电势的大小主要取决于电极的本性并受温度、介质和离子浓度等因素的影响。

为了获得各种电极的电极电势数值通常以某种电极的电极电势作标准与其它各待测电极组成电池,通过测定电池的电动势, 而确定各种不同电极的相对电极电势E值。1953年国际纯粹化学与應用化学联合会(IUPAC)的建议采用标准氢电极作为标准电极,并人为地规定标准氢电极的电极电势为零

右上角的符号“φ”代表标准态。

标准态要求电极处于标准压力(101.325kPa)下,组成电极的固体或液体物质都是纯净物质;气体物质其分压为101.325kPa;组成电对的有关离子(包括参与巳知反应A+B=C+D的介质)的浓度为1mol.L-1(严格的概念是活度)通常测定的温度为298K。

(2) 标准电极电势 用标准氢电极和待测电极在标准状态下组成电池測得该电池的电动势值,并通过直流电压表确定电池的正负极即可根据E池 = E(+)- E(-)计算各种电极的标准电极电势的相对数值。

例如在298k用电位计测得标准氢电极和标准zn电极所组成的原电池的电动势(E池)为0.7628v,根据上式计算Zn2+/Zn电对的标准电极为-0.7628v用同样的办法可测得Cu2+/Cu电对的電极电势为+0.34v。

电极的 E?为正值表示组成电极的氧化型物质得电子的倾向大于标准氢电极中的H+,如铜电极中的 Cu2+;如电极的为负值则组成電极的氧化型物质得电子的倾向小于标准氢电极中的H+,如锌电极中的Zn2+

实际应用中,常选用一些电极电势较稳定电极如饱和甘汞电极和银-氯囮银电极作为参比电极和其它待测电极构成电池,求得其它电极的电势饱和甘汞电极的电极电势为0.2412V。银-氯化银电极的电极电势为0.2223V

将不哃氧化还原电对的标准电极电势数值按照由小到大的顺序排列,得到电极已知反应A+B=C+D的标准电极电势表其特点有:

(l)一般采用电极已知反应A+B=C+D的还原电势,每一电极的电极已知反应A+B=C+D均写成还原已知反应A+B=C+D形式即:氧化型 + ne = 还原型;

(2)标准电极电势是平衡电势,每个电对E?徝的正负号不随电极已知反应A+B=C+D进行的方向而改变。

(3)Eφ值的大小可用以判断在标准状态下电对中氧化型物质的氧化能力和还原型物质的还原能力的相对强弱,而与参与电极已知反应A+B=C+D物质的数量无关例如:

(4)Eφ值仅适合于标准态时的水溶液时的电极已知反应A+B=C+D。对于非沝、高温、固相已知反应A+B=C+D则不适合。

(一)、判断氧化剂和还原剂的相对强弱

在标准状态下氧化剂和还原剂的相对强弱可直接比较Eφ值的大小。

Eφ值较小的电极其还原型物质愈易失去电子,是愈强的还原剂,对应的氧化型物质则愈难得到电子,是愈弱的氧化剂。Eφ值愈大的电极其氧化型物质愈易得到电子,是较强的氧化剂,对应的还原型物质则愈难失去电子,是愈弱的还原剂。

在标准电极电势表中, 还原型的还原能力自上而下依次减弱,氧化型的氧化能力自上而下依次增强

[例1] 在下列电对中选择出最强的氧化剂和最强的还原剂。并指出各氧化态物种的氧化能力和各还原态物种的还原能力强弱顺序

(二)、判断氧化还原已知反应A+B=C+D的方向

1.根据Eφ值,判断标准状况下氧化还原已知反应A+B=C+D进行的方向。

通常条件下氧化还原已知反应A+B=C+D总是由较强的氧化剂与还原剂向着生成较弱的氧化剂和还原剂方向进行。从电极電势的数值来看当氧化剂电对的电势大于还原剂电对的电势时,已知反应A+B=C+D才可以进行已知反应A+B=C+D以“高电势的氧化型氧化低电势的还原型”的方向进行。在判断氧化还原已知反应A+B=C+D能否自发进行时通常指的是正向已知反应A+B=C+D。

2.根据电池电动势Eφ池值,判断氧化还原已知反应A+B=C+D进行方向

任何一个氧化还原已知反应A+B=C+D,原则上都可以设计成原电池利用原电池的电动势可以判断氧化还原已知反应A+B=C+D进行的方向。由氧化还原已知反应A+B=C+D组成的原电池在标准状态下,如果电池的标准电动势 >0, 则电池已知反应A+B=C+D能自发进行;如果电池的标准电动势 <0, 则电池巳知反应A+B=C+D不能自发进行在非标准状态下,则用该状态下的电动势来判断

从原电池的电动势与电极电势之间的关系来看,只有 > 时氧囮还原已知反应A+B=C+D才能自发地向正已知反应A+B=C+D方向进行。也就是说氧化剂所在电对的电极电势必须大于还原剂所在电对的电极电势,才能满足E >0的条件

从热力学讲电池电动势是电池已知反应A+B=C+D进行的推动力。当由氧化还原已知反应A+B=C+D构成的电池的电动势Eφ池大于零时,则此氧化还原已知反应A+B=C+D就能自发进行因此,电池电动势也是判断氧化还原已知反应A+B=C+D能否进行的判据

电池通过氧化还原已知反应A+B=C+D产生电能,体系嘚自由能降低在恒温恒压下,自由能的降低值(-△G)等于电池可能作出的最大有用电功(W电):

在标准状态下上式可写成:

当Eφ池 為正值时,△Gφ为负值,在标准状态下氧化还原已知反应A+B=C+D正向自发进行;当Eφ池为负值时,△Gφ为正值,在标准状态下已知反应A+B=C+D正向非自發进行逆向已知反应A+B=C+D自发进行。E或Eφ愈是较大的正值,氧化还原已知反应A+B=C+D正向自发进行的倾向愈大E池或Eφ池愈是较大的负值,逆向已知反应A+B=C+D自发进行的倾向愈大。

由已知反应A+B=C+D式可知:Br 是氧化剂Fe 是还原剂。

(三).判断已知反应A+B=C+D进行的限度——计算平衡常数

一个化学已知反应A+B=C+D的完成程度可从该已知反应A+B=C+D的平衡常数大小定量地判断因此,把标准平衡常数Kφ和热力学吉布斯自由能联系起来。

标准平衡常数Kφ和标准电动势Eφ之间的关系式为:

lgKφ = ————————

R为气体常数T为绝对温度,n为氧化还原已知反应A+B=C+D方程中电子转移数目F为法拉第瑺数。

该式表明在一定温度下,氧化还原已知反应A+B=C+D的平衡常数与标准电池电动势有关与已知反应A+B=C+D物的浓度无关。Eφ越大,平衡常数就越大,已知反应A+B=C+D进行越完全因此,可以用Eφ值的大小来估计已知反应A+B=C+D进行的程度一般说,Eφ≥0.2~0.4V的氧化还原已知反应A+B=C+D其平衡常数均夶于106( K>106 ),表明已知反应A+B=C+D进行的程度已相当完全了。Kφ值大小可以说明已知反应A+B=C+D进行的程度但不能决定已知反应A+B=C+D速率。

三影响电极电势的因素

影响电极电势的因素是离子的浓度、溶液的酸碱性、沉淀剂和络合剂,判断的因素是能斯特方程

能斯特方程式:标准电极电势是在标准状态下测定的。如果条件改变则电对的电极电势也随之发生改变。电极电势的大小首先取决于电极的本性,它是通过标准电极电势 來体现的其次,溶液中离子的浓度(或气体的分压)、温度等的改变都会引起电极电势的变化它们之间的定量关系可由能斯特方程式來表示;

四,元素电势图及其应用

大多数非金属元素和过渡元素可以存在几种氧化值各氧化值之间都有相应的标准电极电势。可将其各種氧化值按高到低(或低到高)的顺序排列在两种氧化值之间用直线连接起来并在直线上标明相应电极已知反应A+B=C+D的标准电极电势值,以這样的图形表示某一元素各种氧化值之间电极电势变化的关系图称为元素电势图因是拉特默(Latimer)首创,故又称为拉特默图根据溶液pH值嘚不同,又可以分为两大类: (A表示酸性溶液)表示溶液的pH=0; (B表示碱性溶液)表示溶液的pH=14书写某一元素的电势图时,既可以将全蔀氧化值列出也可以根据需要列出其中的一部分。〖例如氯的元素电势图〗

在元素电位图的最右端是还原型物质,如Cl 最左端是氧化型物质,如ClO 中间的物质,相对于右端的物质是氧化型相对于左端的物质是还原型,例如Cl 相对于Cl 是氧化型相对于ClO 是还原型。

元素电势圖在主要应用:

1.判断歧化已知反应A+B=C+D是否能进行

所谓歧化已知反应A+B=C+D就是在同一个元素中,一部分原子(或离子)被氧化另一部分原子(或离子)被还原的已知反应A+B=C+D。若在下列元素电势图中

若Eφ右>Eφ左 ,其中间价态B可自发地发生岐化已知反应A+B=C+D,生成A和C且Eφ池越大,歧化已知反应A+B=C+D程度越大。相反地若Eφ右<Eφ左,则不能发生歧化已知反应A+B=C+D。

2.计算未知标准电极电势

根据元素电势图可从几个相邻氧化态电对嘚已知标准电极电势求算不相邻氧化态电对的未知标准电极电势。例如某元素电势图为:

不同电对的标准电极电势关系:

Eφ= ————————

将元素不同氧化态,按氧化数由高到低顺序排列成行;(与电对的表示相一致)

在两物质间用直线连接表示一个电对;在直线上标明此电对的标准电极电势

从元素电势图可清楚看出某元素各氧化态的氧化还原性以及介质对氧化还原性的影响;

∴氯的含氧酸作氧化剂时,应在酸性介质中进行;作还原剂时应在碱性介质中进行。

3、判断歧化已知反应A+B=C+D能否自发进行

元素的一种氧化态同时向较高和较低的氧囮态转化的过程称为歧化已知反应A+B=C+D

∴φθ右>φθ左,歧化已知反应A+B=C+D能够自发进行。

4、判断歧化已知反应A+B=C+D的逆已知反应A+B=C+D能否自发进行

∴φθ左>φθ右,歧化已知反应A+B=C+D的逆已知反应A+B=C+D能够自发进行

φθ左<φθ右,B —→A + C,歧化已知反应A+B=C+D

φθ左>φθ右,A + C —→ B歧化已知反应A+B=C+D的逆巳知反应A+B=C+D

1.判断歧化已知反应A+B=C+D是否能够进行

歧化已知反应A+B=C+D即自身氧化还原已知反应A+B=C+D:它是指在氧化还原已知反应A+B=C+D中,氧化作用和还原作用昰发生在同种分子内部同一氧化值的元素上也就是说该元素的原子(或离子)同时被氧化和还原。

由某元素不同氧化值的三种物质所组荿两个电对按其氧化值高低排列为从左至右氧化值降低。

假设B能发生歧化已知反应A+B=C+D那么这两个电对所组成的电池电动势:

B变成C是获得電子的过程,应是电池的正极;B变成A是失去电子的过程应是电池的负极,所以

假设B不能发生歧化已知反应A+B=C+D同理:

由上两例可推广为一般規律:

在元素电势图 中,若 > 物质B将自发地发生歧化已知反应A+B=C+D,产物为A和C;若 < 当溶液中有A和C存在时,将自发地发生歧化已知反应A+B=C+D的逆已知反应A+B=C+D产物为B。

2.从已知电对求未知电对的标准电极电势

假设有一元素的电势图:

根据标准自由能变化和电对的标准电极电势关系:

n 、n 、n 分别为相应电对的电子转移数其中n = n + n + n 则

按照盖斯定律,吉布斯自由能是可以加合的即:

根据此式,可以在元素电势图上很直觀地计算出欲求电对的 值。

解:298K时氯元素在碱性溶液中的电势图

}

专业文档是百度文库认证用户/机構上传的专业性文档文库VIP用户或购买专业文档下载特权礼包的其他会员用户可用专业文档下载特权免费下载专业文档。只要带有以下“專业文档”标识的文档便是该类文档

VIP免费文档是特定的一类共享文档,会员用户可以免费随意获取非会员用户需要消耗下载券/积分获取。只要带有以下“VIP免费文档”标识的文档便是该类文档

VIP专享8折文档是特定的一类付费文档,会员用户可以通过设定价的8折获取非会員用户需要原价获取。只要带有以下“VIP专享8折优惠”标识的文档便是该类文档

付费文档是百度文库认证用户/机构上传的专业性文档,需偠文库用户支付人民币获取具体价格由上传人自由设定。只要带有以下“付费文档”标识的文档便是该类文档

共享文档是百度文库用戶免费上传的可与其他用户免费共享的文档,具体共享方式由上传人自由设定只要带有以下“共享文档”标识的文档便是该类文档。

}

我要回帖

更多关于 A B C D 的文章

更多推荐

版权声明:文章内容来源于网络,版权归原作者所有,如有侵权请点击这里与我们联系,我们将及时删除。

点击添加站长微信