什么叫藻类?为什么说藻类都是化能自养菌型的?

macro algae;
macroscopic algae;
macrophytic algae;
macroalgae
大家都在背:
1. Probiotics and large - algae have a very good application prospect in aquaculture effluent treatment.
微生态制剂和大型藻类以其独特的优势,在水产养殖废水处理方面具有很好的应用前景.
来自互联网
2. Seaweeds are any of numerous marine algae, such as a kelp, rock weed , or gulfweed.
海藻指任一种海生藻类, 如大型褐藻 、 岩石藻或马尾藻.
来自互联网
2.algae 指褐藻、红藻和营固着生活的绿藻。
1.macroalgae
2.多细胞藻类。由固着器固着在岩石或其他水底基质上,最大体长可达1 m以上。
1. macro algae
种类依肉眼可见与否分为微细藻类 (microalgae)及大型藻类 (macroalgae),依栖地可分为淡水性 (freshwater)及海洋性 (marine)种类。
- 基于15个网页
2. macroscopic algae
【食品词典】M1_3457 - 豆丁网 ... macroscopic 肉眼观察的;宏观的 macroscopic algae 大型藻类 macroscopic test 低倍检验.
- 基于11个网页
3. macrophytic algae
水产行业词汇翻译3 - 99翻译网... ... macroohytes 大型水生植物 macrophytic algae 大型藻类megascopic 肉眼的.
- 基于9个网页
4. macroalgae
种类依肉眼可见与否分为微细藻类 (microalgae)及大型藻类 (macroalgae),依栖地可分为淡水性 (freshwater)及海洋性 (marine)种类。
- 基于5个网页
1. Chondria armata domoi
...itzschiaceae)中的拟菱形藻属(Pseudo-nitzschia)和菱形藻属(Nitzschia)中硅藻的某些种产生的一种兴奋性神经毒素、1958年,Takemoto和Diago首次从日本鹿儿岛县的大型藻类树枝软骨藻(Chondria armata domoi)中分离出,并以该藻的日文名命名、该藻在传统医学中被用作驱肠虫剂、1975年Impellizzeria等人从生长在地中海的一种红藻(Alsidium Corallinum)中也分离出DA、1987年加拿大.
- 基于1个网页
1. Gracilaria Lemaneiformis
摘 要:研究了不同温度、光照条件下大型藻类龙须菜 (Gracilaria lemaneiformis)的生长和光合作用特性,及其对扇贝排泄氮、磷的 …
- 基于2个网页
1. Marine macroalgae
高速采样器High - speed sampler海洋大型藻类Marine macroalgae-
- 基于3个网页
本内容来源于
以上内容来自百度百科平台,由百度百科网友创作。
0){var rand = parseInt(Math.random() * (000)+100000);top.location.href='/'+encodeURIComponent(document.getElementById('s').value.trim().replace( / /g, '_'))+'?renovate='+}else{top.location.href='/'+encodeURIComponent(document.getElementById('s').value.trim().replace( / /g, '_'));};}" action="/">
查过的词自动加入生词本
Tip:此功能设置只能在登录状态下生效
需要改进的内容:
单词大小写
其他(请在下面补充描述)
错误描述:
您还可在这里补充说明下 O(∩_∩)O~
方便的话,请您留下一种联系方式,便于问题的解决:我关注的版块:
查看: 22085|回复: 176
二星工程师, 积分 776, 距离下一级还需 24 积分
土木币3369
藻类(除蓝藻其它藻类均是真核生物)通常是指一群在水中以浮游方式生活、能进行光合作用的自养型微生物,个体大小一般在2~200um,其种类繁多,均含叶绿素,在显微镜下观察是带绿色的有规则的小个体或群体。由于它们是水体中重要的有机物质制造者,故在整个水体生态系统中占有举足轻重的作用,是生态系统中不可缺少的一个环节。(藻的种类不同,各种藻细胞的大小、形状及产生的胞外有机物量便有差别。)
一、藻类的生物学特性:
1、藻类的形态、结构。
&&浮游藻类大多数是单细胞种类,在生理上类同于植物细胞,只是细胞较小,仅悬浮于液体介质中。藻类可划分为:蓝藻门、硅藻门、绿藻门、甲藻门、裸藻门等,在不同的水体类型和营养条件下,会出现不同的优势藻属。在淡水中,蓝藻中的微囊藻和硅藻中的颗粒直链藻一般被认为是富营养型湖泊的典型代表。
&&藻类细胞和植物细胞在结构上是相似的,有活性的细胞质膜,有一系列高度分化的细胞器和内含物。包括:细胞壁、核、色素和色素体、储藏物质、鞭毛。其中蓝藻细胞为原核细胞其余所有藻类都属真核细胞。原核蓝藻结构保守,代谢途径多样化:真核藻类在结构上高分化,代谢途径保守。
& & 藻类的繁殖方式有营养繁殖、无性繁殖和有性繁殖三种。营养繁殖是通过细胞分裂进行;无性繁殖是通过产生不同类型的孢子进行,产生孢子的母细胞为孢子囊,孢子囊为单细胞,孢子不需要结合,一个孢子长成一个新体;有性繁殖是藻类形成专门的生殖细胞配子经结合后长成新的个体。
2、藻类在水体中的悬浮机制。
&&藻类作为光合自养生物要维持不断的生长就必须能够在绝大部分时间内处于真光带区域。Smayda认为,水的运动对藻类等浮游植物的悬浮有着重要的意义。在无水运动的情况下,绝大多数非游动的浮游植物将会下沉。自然水体浮游植物种群的典型下沉速度为0.1m/d到1~2m/d。
& &藻类对悬浮生活的适应有几个因素:体型大小、密度和体型阻力。一般而言,藻类可通过如下途径来适应悬浮生活:
&&分泌黏液或制造胶状物质,使个体减轻;
&&形成气囊状物质,如蓝藻细胞的伪空胞;
&&形成比重较小的代谢物质,如进行光合作用的细胞产生气体、脂肪或油珠等物质;
& &增加身体表面积以增加与水的摩擦抵抗力,如某些硅藻和甲藻的细胞表面有刺或突起,其下沉时的阻力就大许多倍。
& &水的粘滞性随温度而改变。从0~25℃同一个体下沉速度就快1倍。概括而言,浮游藻类减小平均密度的机制包括:①储存相对密度较轻的脂类;②离子调节;③在蓝细菌中,分泌黏液质或产生伪空胞。
3、藻类在水体中的时空分布特点:
&&藻类的生存环境是异质的,从时间上看,最显著变动的因子如温度、光照强度、水动力学特性、营养物可利用性等,这些变动可在不同的时间水平上得以反映。
& &湖泊水体具有垂直的异质性。以温带深水湖泊为例,水柱温度分层过程既是水层物理性状分层的原因也是结果。每一分层有其特有的运动、温度、水密度和盐度。渗透压也随水层深度呈现梯度变化。以水温为例,垂直分布随湖水深度的变化而不同。长江中下游的浅水湖,全年以正温层为主,冷空气侵袭时出现短暂的逆温现象,阴雨天则呈同温层分布,接近多循环型;内陆深水湖夏季属正温层,春秋属同温层,冬季冰层下呈逆温层,输双循环型;外流深水湖春夏秋三季为正温层,夏季出现明显的温跃层,冬季近于同温层。
由于不同深度水层所接受的光照强度和水体热力学状态的显著差异,藻类分布在空间垂直的异质性也是较明显的。而所有以上这些因子促成了藻类具有连续性的垂直分布现象。藻类本身也会强化垂直分层,例如,藻类在表层吸收营养后,下降于底层并分解,则会引起表层营养的缺乏和深层营养的增加;悬浮藻体对阳光的吸收和散射,使光照强度随深度的增加而减弱的现象更加显著。
水平分布差异一般在水体处于相对静止和藻类生活环境没有发生变
二星工程师, 积分 776, 距离下一级还需 24 积分
土木币3369
化的情况下才能保持。在通常情况下,浮游藻类的水团分布是沿岸带>河口带>敞心区(湖心区)。
这是因为,沿岸带有来自地表径流的外源营养和明显的水体混合,是藻数量大的主要原因;河口区由于有来自湖水携带的外源营养的补充,营养较丰富,藻数量也较高;敞水带尽管湖底聚集大量的营养物质,但由于较深或分层的缘故,藻数量少。
另外,环境因子也影响着藻类的分布,例如风向、水流、水位等。
4、藻类的季节演替规律。
&&藻种群组成的季节变化,可由两种机制或两种机制的复合作用引起。两种机制是指演替和次序变化。演替是一个特定水体内的物理(如光、温)、化学(营养物、水质、毒素)和生物(竞争、摄食)因素的改变所引致的种类变化,而次序则是由水体类型的变动而引起的种类变化。一个典型的演替是固有种类的变化,而典型的次序变化则是外来种群引入和繁殖所引起的。
温带地区许多湖泊藻种群组成变动的周期是及其相似的。冬季,尽管水体营养物质浓度升高,由于水温低、光照强度低和日照短,藻类生物量和生产力很低。构成冬季水体的优势种往往是几个门类的耐寒种。早春虽然温度依然很低,但光照强度增高,日照长,促进了藻类的大量增殖。随后,水温逐渐升高,水体分层开始进行,藻类可充分利用水体营养,此时由于生长缓慢的浮游动物的延迟出现,个体较小、易被吞食且生长迅速的种类便成了春季水华的优势种群。随着浮游动物摄食压力增大,水体中营养物质缺乏,春季水华结束,标志着藻类生产力的夏季下降。无论是淡水还是海水环境,硅藻都是春季水华的优势种类,在温带湖泊中绿藻也是大量发生的春季和夏季种类。在水体富营养化时,绿藻和蓝藻常相伴大量共存。夏季则是个体较大、不易被摄食的种类普遍发生。由于夏末水体分层结束后发生混匀,常在秋季出现较小的硅藻增殖。
藻类季节演替还受其他一些因素影响。例如,硅藻生物量的下降很可能与水体混匀层硅的再生速率低有关。而在营养缺乏的水体分层时期,游动细胞则可能利用其游动能力主动找合适的位置而占优势。从代谢水平上看,夏季浮游生物量的下降部分可以认为是光合作用与呼吸作用比率的下降所致。因为,营养物缺乏降低了光合作用速率,而高温提高了呼吸速率,从而导致低的净生物量。
5、藻类群落及生存对策:
&&藻类在海洋中的种类主要是硅藻和甲藻类群,淡水中主要是硅、甲藻、绿藻、蓝藻、金藻和黄藻的混合体,一般而言,寡营养水体中以金藻和鼓藻占优势,富营养水体中则是蓝藻和硅藻占优势。
藻类的生存对策则是由Timan基于资源竞争的理论模式来解释,Tilman模式指出了有不同营养要求的种之间的竞争和共存的一般规律。
按生物学竞争排斥原理,在某一水体最终应仅剩下一个或几个最能有效利用有限资源的种类,但实际在同一水体中可以同时有10~50种藻类共存,这可以有几种解释:
⑴不同藻类具有各自的营养物需求特征,不同藻类被不同营养物所限制,避免了直接竞争,使许多种类生活在一起成为可能。
⑵浮游动物的摄食增加了藻类共存的机会。摄食降低了藻细胞的总生物量,从而减缓了对营养物资源的需求强度,进而缓和了种类间竞争营养物的程度。又因为了不同的浮游动物摄食有种类和大小的选择性,通过对优势种类的摄食,可利于大多数相对劣势的种群的生存。
⑶湖泊混合层和海洋并不是均质的。在无风温和的气候条件下,光、温度、营养的垂直梯度分布提供了空间上的异质化,使得不同种类得以在各自的最适区域生长繁殖,从而使竞争降到最小。另外,藻类在生理功能上的昼夜节律也为资源的利用提出了暂时的异质化条件。
总结藻类的生物学特性,可以看出藻类的生长态势受环境的影响很大,具体包括水温、光照、地形、共存生物等等。
二、藻类生长的影响因子:
在正常环境中,藻类生长多数在光和黑暗交替的条件下生活。在白天,藻类依靠体内的叶绿素a、b、c、d类胡萝卜素,藻蓝素,藻红素等光合作用色素,从H2O的光解中获得H2,还原CO2成【CH2O】n。其化学反应式为:
& && &&&↓光
CO2+H2O→【CH2O】+O2
在光合作用中,叶绿素是将光能转变为化学能的基本物质,类胡萝卜素是辅助色素,它和叶绿素相结合,不直接参加光合反应,有捕捉光能并将光能传到叶绿素的功能,还能吸收有害光,保护叶绿素免遭破坏。
藻类进行光合作用所产生的氧气容于水或释放入大气。
藻类光反应最初的产物ATP和NADPH2不能长期储存,它们通过光周期把CO2转变为高能储存蔗糖或淀粉,用于暗周期。在夜晚,藻类利用白天合成的有机物做底物,同时利用氧进行呼吸作用,放出CO2。
⑴营养因子与藻类生长。
营养因子是藻类生长和增殖的根本,藻类细胞由20多种元素组成,其中C、O、H、N、P、S、K、Mg、Ca、Na、Cl等11种元素占细胞干重或无灰分干重的0.01%以上,称为大量元素。其余的元素,如Fe、Mn、Cu、Zn、B、Si、Mo、Co等含量较低,被称为微量元素。对绝大多数水体而言,限制藻类生长的营养因子主要是氮和磷,有时CO2也会成为限制因素。
水环境中氮的主要来源是氮气,大气放电、光化学反应和生物固氮作用可将大气中的惰性氮转化为氮化物而进入水体。水体中的氮的形态粗略分为5种:分子氮、氨氮、亚硝酸盐氮、硝酸盐氮以及有机氮化物。经过固氮、同化和脱氮等生化作用后,一部分无机氮被生产者(水生植物如藻类)合成蛋白质并通过食物链进行传递,为其他消费者所利用;而部分无机和有机氮化物被分解成游离氮在氮食物链传递的过程中,生态系统的死亡有机物包括动植物尸体和排泄物,经过微生物的分解而释放出氨基酸,再经氨化菌作用而形成氨。其中,一部分以氨盐或其硝化产物的形式被植物吸收,再次进入循环途径;而有些则通过事物的脱氮作用或直接以氨的形式返回大气。此外,生态系
二星工程师, 积分 776, 距离下一级还需 24 积分
土木币3369
统中的一些动植物尸体可能被埋入地层深处或成为深水沉积物,其中的有机氮将暂时脱离循环。
氮循环中虽然部分氮经上述途径而流失,但是这种损失得到了事物固氮和高能固氮的补偿。因此,氮循环是一个相当完全的、具有自我调节和反馈机制的系统。
氮是藻类合成蛋白质、叶绿素的元素。根据实验测定和理论推算,浮游藻类细胞中的碳、氢、磷摩尔比例为106:6:1。水体中的氮包括有机态氮、氨氮、硝酸态氮、亚硝酸态氮。我国于年期间进行的调查显示,20个大中型水库氨氮平均氨氮浓度为0.029~1.508mg/L;城市近郊小型湖泊的氨氮浓度为0.262~20.82mg/L。一般淡水藻类的固氮速率为0.025~17ug氮/光照小时。根据美国环保局1976年进行的调查,美国东部623个湖泊中有30%是氮起着限制作用。
磷在水体中通常以正磷酸盐的形式存在,由于岩石的风化、磷酸盐矿的溶解、土壤的淋溶和迁移以及生物转化等过程,使磷酸盐进入水体。淡水中磷的循环可归纳为7个过程:①磷从岸边通过地表径流而进入水体;②岸边的水生植物和水体中的浮游植物从水中摄取磷,并经食物链传递;③水生生物的排泄物以可溶态有机磷的形式释放磷,并在磷酸酶的作用下缓慢的转化为磷酸根而被重新利用;④动植物尸体和其他含磷的悬浮物在沉降到水底的过程中,因其有机物分解而释放磷;⑤动植物尸体和悬浮物沉积到水底;⑥当水底的沉积物处于还原条件下,磷通过扩散作用从沉积物扩散到上层水体中;⑦沉积物中磷酸根与铁、铝等金属作用生成难溶解的磷酸盐而储存在沉积物中,暂时退出循环。由此可见,磷循环是一个不完全的循环,尤其在自然界中,大量的磷进入海洋后沉积于深处,而重新返回的磷不足以补偿陆地和淡水水域中的损失。由于磷的不完全循环,世界上很多地区的淡水水域缺磷,以致磷成为水体初级生产力的重要限制因素,一旦大量的磷进入水体后,往往会引起浮游植物的迅猛生长而使水体呈现富营养化。
磷是核糖核酸RNA和脱氧核糖核酸DNA以及三磷酸腺(ATP)的重要元素,也是许多酶促反应的辅酶因子的组成元素,是细胞内光合磷酸化和氧化磷酸化等能量转化的关键因素。一般认为,磷是藻类生长繁殖的首要限制因子。当水环境的磷供应充足时,藻类就可以得到充分增殖。我国大中型湖泊的总磷浓度范围是0.018~0.400mg/L,城市近郊小型湖泊磷的含量范围是0.089~0.74mg/L。
(4)、氮磷比
氮磷比(N/P)也是主重要的影响因素。在N、P较丰富的情况下,对光合作用最适宜的N/P是7.2。日本湖沼学者坂本曾经研究指出:当湖水的TN/TP为10:1~25:1的范围时,N/P较大时,蓝藻为优势藻种;春秋绿藻为优势藻种;弱酸性水体中,水温低时,硅藻、金藻、甲藻易占优势。
(5)、碳源
碳是构成有机物的基本元素,其代谢又是生物的能源来源。因此,生物即要从环境中获得碳源的补充,又要经过各种代谢作用将其回归自然。水环境中有机物的来源有两种:一种是随地表径流以溶解态或悬浮态进入水体的外来有机物;另外更重要的一部分是水生植物通过光合作用,利用二氧化碳等无机物所合成的各种复杂有机化合物。异养生物通过食物链直接或间接利用这些有机物,将植物的有机物转化为动物有机物。水体中的动植物通过呼吸作用来产生能量以维持自身生命活动的需要,其结果是一部分有机物被破坏和分解,所产生的二氧化碳将回到环境中去,一部分将进入到再循环途径。水体中动植物的排泄物及其死亡后的生物体,在水团或底部沉积物中被微生物分解,同时释放出同化的物质,使二氧化碳又重新回到环境中,在下一次循环中被利用。水体中所自生的或外来的有机物并非全部被破坏和分解,其中一部分有机质以不同的形式脱离水体(如渔业捕捞),通过其他途径进行碳的循环;另外一些未被分解的有机物质(如木质素)沉积于水底,逐渐转化为具有地质化学特征而退出循环。
CO2是藻类进行光合作用的碳源。藻类在有光照的条件下利用水中的氢还原CO2合成有机物质,藻类生物量增加,水中CO2逐渐减少。可通过藻类利用CO2的速度来指示水体富营养化程度。日本学者提出预告水体富营养化的关系式所示:
COD(mg/L)×无机氮(mg/L)×无机磷(mg/L)÷1500
以测定和预告水体富营养化的发生和富营养化的程度。当该值﹤1,水体不能发生富营养化;当该值=1,水体中营养增高,但富营养化不很严重;当该值﹥1,则水体氮磷含量高,可发生富营养化。该值越大,富氧化程度越严重。
三、生态因子与藻类生长:
微生物生存的场所中,对微生物生长发育具有直接或间接影响的环境要素,成为生态因子。生态因子是藻类生长的外因。主要包括光照、温度、pH值、溶解氧、水的活度、氧化还原电位、其它生物等。
在富营养化的湖泊水库中,营养充足,藻种群由于对温度、光照等生态因子的适应,群落组成存在季节演替现象。藻种群的生长态势与生态因子之间密切相关。
⑴光照的影响
光照对藻类生长的影响主要表现在:
①& & & & 水体中藻类的生长是利用光能进行光合作用合成自身物质的。在一定范围内,光照强度增加和光照持续时间延长,藻类的生长率也增加。不同的藻需要不同的光照强度。
②& & & & 藻类在水体的垂直分布受光质和光强影响。在水体中,由于水对各种光波的吸收能力不同,不同水深具有的光波范围也不同。一般,蓝藻常集中在表层,绿藻大都分布在上层,硅藻一般在绿藻之下。另一方面,光强限制了藻类向深层分布的深度。
⑵温度的影响
绝大多数藻类是中温性的。温度对藻类的生命活动有重要的影响,一面通过控制光合作用或呼吸作用强度,直接影响藻类的增殖。另一方面,可通过控制水体中各类营养物的溶解度、离解度或分解率等理化过程间接影响藻类的生长。
温度对藻类在水体中的分布和数量也起一定的作用。在风力比较小
二星工程师, 积分 776, 距离下一级还需 24 积分
土木币3369
和水体比较平静的状态,温度沿水体深度分布存在着温跃现象,水体呈现分层,垂直方向的传质受到限制。水体的分层会加速藻类的繁殖生长。
⑶pH值的影响
水体pH值的影响主要表现在:引起细胞膜电荷的变化,从而影响营养物的吸收;影响代谢过程中酶的活性;影响生长环境中营养物的溶解度、离解度或分解率等理化过程,从而改变营养物质的供给。
&&天然水体中pH值主要取决于游离CO2的含量及碳酸平衡:
CO2(溶解于水中)+H2O=HCO3-+H+=CO32-+2H+
水体中的pH值由于藻、菌的作用,昼夜变化,也随季节变化和生物的垂直分布而变化。
藻类生活的最适宜pH值为范围为6.5~7.5,可以生长的范围在4~10,多数蓝藻最适合生长在弱碱性条件下。
四、地形因子与藻类生长
影响富营养化的地形因子主要有面积、水力停留时间、容积、水深、岸线系数等因素,富营养化易发生在水流比较缓慢、水深比较浅(一般小于4米)、相对封闭的水域。这类湖泊利于光照、温度向水体内部的透入,有助于水体迅速增温,光线充足,水压较小,有较大的浅水区,低泥距离水面近,有利于营养物的释放,因此藻类容易大量繁殖,形成富营养化现象。
&&另外,湖泊水域的封闭度是衡量湖泊生态条件优劣的重要标志之一。封闭度愈大,愈不利于交换,愈有利营养物质在湖泊水体内的滞留和积累,从而为生物生产提供了良好的条件。
富营养化对供水安全的影响
湖泊水库作为我国重要的给水水源,水体富营养化对供水安全带来的影响主要表现在水厂运行、饮用水水质、管网、与管网水质三方面。
一、& & & & 对水厂的不利影响
由于水中微小藻类不易在混凝沉淀构成中去除,含有大量藻类的沉淀水进入滤池时,常常使得滤池较早堵塞,使滤池运行周期缩短,反冲水量增加,严重时可能导致水厂停产。
& &另一方面,水中大量藻类、有机物和氨氮的存在,使得混凝剂和消毒剂用量大大增加。这是因为:天然有机物所含羟基和酚基,使得有机物所具有的负电荷是黏土矿物颗粒阳离子交换容量的几十倍,因而使混凝剂消耗量增加。同时,有机物和氨氮与氯反应,投加量大大增加,不仅使制水成本提高,更增加了水中消毒副产物的含量,降低了饮水安全。
&&富营养化水体在缺氧时产生大量的硫化氢、甲烷和氨等,更增加了水处理的技术难度。
二、& & & & 对水质的不利影响
在富营养化的湖泊水体中,藻类大量繁殖,引起不同的腥味异臭。藻类产生的臭味用常规处理工艺很难去除,使城市供水出现不愉快气味,大大影响了供水质量。
某些藻类在一定的环境下会产生对健康有害的毒素。例如,蓝藻门的不定腔球藻、铜绿微囊藻、水华鱼腥藻等分泌肝毒素、神经毒素等有毒物质。动物饮用含有藻毒素的水可能死亡。目前淡水水华毒素已经引起了供水行业的高度重视。藻毒素:是由水华水体中有毒藻类产生的一类多肽类毒素,其中微囊藻毒素LR和YR型异构体(Microcystin . MC-LR . MC-YR)是其主要毒性成分,藻毒素急性毒性实验表明,藻毒素可以引起充血肿胀,病理学观察显示肝脏严重淤血、出血和片状坏死,表明肝脏是藻毒素的靶器官。藻毒素具有促进肝细胞增生的功能,藻毒素单独作用不能激活GSTPi基因的表达,但能促进已启动的GSTPi基因表达增加,对肝癌的发生具有促进作用。虽然生长期的藻细胞也能主动释放毒素(40%),但大部分的毒素是在细胞衰老和死亡时释放(60—80%)。(国标 0.001mg/L)
藻类大量繁殖,在新陈代谢、细胞分解过程会分泌有机物,其残骸在腐烂、降解过程中也产生有机物,这些有机物很多属于Ames试验氯化致突前体物。有报道指出藻类有机物可与氯反应生成三氯甲烷,这些都是使得饮用水的致突变性提高。
三、& & & & 对管网和管网水质的不利影响
穿透滤池进入管网的藻类以及残留在水中的生物及可同化有机物(AOC)可促进细菌在管网的生长,甚至可能生成较大有机体,严重时可堵塞水表、水龙头等。
此外,水中腐殖酸、富里酸和水中的无机颗粒结合形成的细微颗粒,在管道流速较小的地方沉淀下来成为管垢,在较厚的地方因厌氧而发生腐殖质的腐化和垢下腐蚀,影响管网水质并增加动力消耗。同时溶入水中的铁和重金属离子也进一步恶化了管网水质。
藻类对水质的影响
1、& & & & 由于藻类密度低,不宜被沉淀与澄清池等分离,又因浊度多为有机物质组成,耗氧量高,而且电动电位()高具有较高的稳定性。混凝时需投加较多混凝剂使净水成本升高。生成的絮体轻且强度低,沉淀困难又极易穿透滤池,对滤池的设计及运行管理要求较高。
2、& & & & 由于含藻水的pH值都偏高,对混凝剂品种的选择性强,高的pH值会阻碍铝盐产生高电荷的水解聚合物,不利于脱稳。
3、& & & & 藻类在水中大量繁殖后,所产生的芳香族臭、青草臭、水藻臭、鱼腥臭、霉臭和泥土臭和腐殖质等不同臭味,在给水处理中很难去除。
4、& & & & 色是藻类的次生物,由于藻类的存在而导致水的色度增加,给净水增加了许多困难。
5、& & & & 藻类干扰快滤池的运行,含藻水经混凝后进入滤池。因为藻类有的长度100到200微米,很容易在滤床表面形成一层毯状物犹如滤膜,使过滤水水头损失过快,运行周期大为缩短,反冲洗频繁,产水量大为减少。
6、& & & & 藻类附着在各种池钢筋混凝土和金属附件及管道表面。除有腐蚀性外,时间久了形成生物粘泥,增加了清洗池子和水中金属表面的难度和工作量,并消耗大量的消毒剂。
7、& & & & 藻类易在钢筋混凝土和金属附件及管道表面附着生长。由于藻类的
二星工程师, 积分 776, 距离下一级还需 24 积分
土木币3369
物理、化学及生物作用而产生腐蚀性。
8、& & & & 有的藻类还具有毒性,在其生长繁殖和死亡过程中将毒素释放到水体中,对人体健康产生危害。
9、& & & & 穿透滤池进入管网的藻类以及残留在水中的生物可同化有机物(AOC)成为微生物繁殖的基质,促进了细菌生长,甚至可能在管网中生长较大的有机体如线虫和海绵动物等。这些浮游动物是很难去除的,严重时可堵塞水表、水龙头。
10、& & & & 水中藻类死亡后代谢的腐殖酸和富里酸具有与水中的无机离子及金属氧化物发生离子交换和洛合的特性,所以往往和水中的无机颗粒结合在一起。出厂水中会含有这种细微颗粒。它们在管道流速较小的地方沉积下来形成管垢,在沉积较厚的地方因厌氧而发生腐殖质的腐化和垢下腐蚀影响管网水质并增加动力消耗。
& &&&藻毒素在藻类代谢过程和死亡时产生有害成分,2000多种蓝绿藻中有40余种可产生毒素。不同的藻株可产生相同的毒素而同一藻株,可产生多种不同的毒素。
& &常规给水处理工艺的一些处理阶段有可能导致藻毒素的释放。例如,向水中投加硫酸铜、二氧化氯等预氧化剂会导致藻毒素浓度增加;混凝过程由于无机盐混凝剂会刺激藻细胞,也可导致藻毒素的释放。另外,在过滤过程中,藻类在滤料表面截留,随着过滤时间的延长,截留在滤料表面的藻细胞在死亡过程中也会释放出藻毒素导致出水AOC增高。
& &水体富养化使藻类过量繁殖,产生藻毒素,使常规水处理难度增加,不但影响水厂运行效果,而且影响管网水质。
二星工程师, 积分 776, 距离下一级还需 24 积分
土木币3369
藻类的控制与去除
在相对封闭的水域,如湖泊、水库、储水池等,由于受到污染而发生富营养化,水中藻类等浮游植物会增殖剧烈,因此,消除藻类对城市供水水质的影响,关键要限制水体的营养盐含量。
一、库区采取的措施。
①物控制是绿色的控藻技术。中国科学院水生所通过在东湖放养鲢、鳙鱼,使其14年未再爆发水华。此外,还可利用藻类病原菌、藻类病毒以致藻类繁殖。
②清除底是彻底的去除内源性营养盐的方法,但也具有风险,因为底泥中的污染物会重新进入水体,宜采取有效的防范措施。
③解层技术是常用的物理方法,即人为地使水体水层混合,消除热分层及由此引起的利于藻类繁殖的条件。英国在一些面积大于1Km2和水深大于10m的水库中应用暴气或推流系统来防止水库热的分层,但对水深小于10m的水库,则因水浅而难于使用曝气系统。
投加硫酸铜是应用最多的化学方法,但是硫酸铜的投加量较大,须保证浓度1.0mg/L以上才能有效控制藻类生长,会使水中铜盐浓度上升。铝盐、铁盐、钙盐都是有效的营养物钝化剂,它们可以沉淀水体中的氮和磷,在美国许多湖泊水库的应用中,成功地去除了藻类和其他水生植物。
改变水体的pH值,向水中投加石灰提高pH值,有助于抑致藻类的生长。
美国有一种产品称为Aquamats,具有很强的摄取氮磷等营养物质的能力,将此产品置于水体中,它们抢先摄取氮磷等营养物质,光合作用之后可产生鱼类和其他水生生物的食物,藻类得不到足够的营养物,其生长受到限制,其作用相当于一人工湿地。
在取水口种植芦苇等植物,拦截藻类进入水厂。
二、水厂采取的措施。
当水中藻类随取水进入水厂,则需在水厂采取杀藻除藻措施。
预氧化杀藻是常用的一项除藻技术。常用的预氧化剂有氯、二氧
二星工程师, 积分 776, 距离下一级还需 24 积分
土木币3369
由于ClO2氧化时向ClO2ˉ和ClO3ˉ的转化率为70%,所以ClO2投加量不宜超过1mg/L,这个投加量对含藻量高的水是不够的,所以限制了二氧化氯用作预氧化剂的使用。(在欧美有一些国家严格控制投加量。)
高锰酸钾预氧化杀藻,由于其氧化能力较弱,杀藻效果不如前几种预氧化剂。但是,上述几种氧化剂杀藻时会导致藻细胞的破坏,使水中臭味物质以及藻毒素含量增大,造成二次污染。高锰酸钾杀藻时藻细胞内溶物基本不外泄。此外,高锰酸钾预氧化迄今尚未发现对人体有害的氧化副产物,所以是比氯、臭氧和二氧化氯更安全的杀藻剂。高锰酸盐复合剂(PPC)由于主、辅剂的相互协同效应,使其杀藻效果显著提高。
混凝是城市水厂净水工艺不可缺少的主要单元,也是除藻的主要方法,由于藻类细胞一般都带负电,在水中投加混凝剂以中和藻类表面的负电,使之脱稳而沉淀。对于低浊度的含藻水,由于水中泥沙颗粒较少,混凝生成的絮体密度较低,故沉速较慢。为了加快固液分离,可以采用污泥回流的方法,以强化絮凝反应,生成更粗大更密实的絮体;还可以向水中投加有机高分子助凝剂,提高絮凝沉淀效果;还可以向水中投加细砂、黏土、氯化钙等,以加大絮体密度,提高絮体沉淀速度,等等。
采用气浮的方法,使微细气泡黏附在絮体表面,借助气泡上浮的作用,使絮体快速上浮而分离除去,所以气浮是一种高效处理含藻水的技术。但是,气浮产生的浮渣的处理比较难,是有待解决的问题。
微滤机是一种物理除藻方法。用极细孔径的网筛过滤含藻水,可将水中部分藻类去除截留。微滤机除藻在我国很少使用。
膜滤除藻也是一种物理除藻方法。使水通过微滤膜超滤膜,可将水中藻类几乎全部除去,但要防止藻对滤膜的污染。
高锰酸钾及其复合剂(PPC)即是预氧化杀藻剂,也是助凝剂和助滤剂,能显著提高混凝除藻效果。将高锰酸盐复合药剂除藻实验结果与生产上预氯化的藻类去除滤比较,对于相同的原水水质,用预氯化方法,PAC的投加量90mg/L,加氯量14mg/L,沉后水除藻率达到70%左右;而投加PPC1mg/L和PAC40mg/L时,即能达到沉后水藻类去除率97%的效果。
藻类的数量与水体的富营养密切相关,所以藻类的治理是一项系统工程,应从源头抓起。
二星工程师, 积分 776, 距离下一级还需 24 积分
土木币3369
藻类的上浮特性以及阻止藻类上浮的条件
一、& & & & 水环境特征及藻类特性以及藻类上浮的水力条件。
1、& & & & 光照强度对藻类生长的影响。
光能是天然水体中绿色植物光合作用合成有机物的唯一能源。水生植物的光合作用速率在很大程度上取决于光强和光质。藻类的空间分布、生长率与光强、光质的空间分布密切相关。
太阳光波长范围150~4000nm,其中可见光波380~760nm,波长小于380nm的为紫外光,大于760nm的光为红外光。红外光可产生大量的热。紫外光对生物有杀伤作用。只有可见光才能在光合作用中被植物利用,并转化为化学能。叶绿素是绿色的,主要吸收红光(760~620nm)和蓝光(490~435nm)。藻类除含有各种叶绿素外,还有许多辅助色素,在吸收各种波长光能起着重要作用。
藻类的生产力与光强有密切的关系,生产力随光强的变化分为三个阶段;第一阶段为上升阶段,即藻类的光合作用随光强的增加而增加最终到最大值,对应的光强称为最适光强。第二阶段为稳定阶段,在光强超过最适光强后的一定范围,藻类光合作用随光强的变化很小,处于稳定的高光合作用状态,在这一范围内的光强称为饱和光强。第三阶段为下降阶段,光强超过饱和光强后,藻类的生产力随光强的增强而减弱,这种现象称光抑制。硅藻的最适光强为lx,蓝藻为1lx,饱和光强一般为1lx,抑制光强>2300lx。
由于光强沿水深呈指数递减,必然引起藻类生产力沿水深逐步减少,但两者递减的规律略有不同,其不同点主要表现在两方面。
A、下降速度不同,生产力下降速度比光强下降速度慢。
B、变化规律不同,最大光强必然出现在水面,而光抑制作用。晴天时表层藻类生长受到抑制,使生产力最大值不出现在水面,而是出现在水下某一深度(一般出现在1/2透明处),这一水层称为最大光合层或最适光合层。最大光合层以下各层的生产力将随光强的减弱而下降。但在阴天,表层光强通常为lx,整个水层光强均在最适光强以下,不出现光抑制,故表层生产量最高。
随着水深的加大,光合作用逐步减弱。当总生产量与呼吸量持平时,净生产量为零。净生产量为零时的光照强度称补偿点。补偿点所在的深度称为补偿深度,补偿深度与水体透明度有关,一般为2~3倍透明度,故藻类的生长主要发生在3倍透明度以上。
二、& & & & 藻类悬浮机制对藻类的生长影响。
藻类在水中的运动分为下沉、悬浮、上浮三种情况。在静水条件下,绝大多数非浮游的藻类会下沉,其下沉的典型速度在0.1m/d和1~2m/d。因此,对绝大多数的藻类而言,问题不在于是否下沉,而是下沉得多快以及自我调节下沉速度,以便在光亮带逗留更长时间获得生长的机会。大多数死亡后失去调节机制,下沉速度加快。悬浮只是一个介于下沉和上浮之间的临界状态。即藻类通过自身的调节机制使其即不下沉又不上浮,处于悬浮状态,上浮的藻类重量小于浮力时发生,且主要发生于微囊藻。当大量藻类浮于水面即形成“水华”。藻类为了自身的生长繁殖,利用各种浮游机制减少下沉速度,使其处于悬浮或上浮状态,延长在水中的停留时间,获得最大的生长机会。
藻类大多数原生质的密度都比水大,碳水化合物的密度约为1500kg/m3核酸约为1700kg/m3。在正常细胞中,常见的许多浓缩的储存物质也同样稠密一些。特别是多聚磷酸盐的密度约为2500kg/m3,而硅藻壁中的乳白色二氧化硅的密度达到了2600kg/m3。只有脂类物质的密度小于水的密度(最轻的约为860kg/m3),但它们一般只占细胞干重的10%。因此,藻类通常比水重,且会在水中下沉,藻类要悬浮于水中必须增大浮力以克服自身重量。藻类增大浮力的措施包括:产生伪空胞,储存密度较轻的脂类等。
伪空胞是蓝藻特有的结构特征,它包括大量中空的亚显微圆柱气囊(直径70nm),其蛋白质壁可让气体全部通过,但疏水内面能阻止液体的进入,因而形成了空胞结构,提供藻类浮力使藻类上浮,在正常细胞中,伪空胞结构占细胞体积的1~2%左右即可支持藻类悬浮。
藻类能调节其伪空胞体积和自身重量,以达到浮力和重量的平
二星工程师, 积分 776, 距离下一级还需 24 积分
土木币3369
衡。调节其所处的位置。藻类调节气泡体积的机理是:单个气囊能抗400~700kpa的外界压力。如果外界压力超出这一压力,气囊不可逆转地破裂。如光合作用合成的一些可溶性物质将细胞内渗透压力提生至350~500kpa足以使一些老的气囊破裂。同时新气囊不断组装。这种动态的破裂和组装提供了一个潜在的调节浮力的机制。在晴天的表层水体中,快速的光合作用使足够多的气囊破裂浮力下降,藻类下沉。随着藻类的下沉,光强度逐步减弱,光合作用减慢气囊的组装速度大于破裂速度,浮力上升,使浮力与重力平衡,藻类处于悬浮状态。
藻类调节自身重量的机理是:在晴天的表面水体中,快速的光合作用合成了大量的淀粉,增加个体重量使藻类下沉。光强度逐步减弱合成物质减少,呼吸作用增加个体重量逐渐减小。当减小与浮力平衡时,不在下沉处于悬浮状态。这一平衡位置处于补偿点附近,该处的光合作用速度与呼吸作用速度相当。在晚间,光合作用停止微囊藻会迅速上浮到表面。另外,衰老和死亡的微囊藻重量下降会漂浮到水面形成水华。
脂肪的积累是藻类的另一个悬浮调节机制。脂肪和油通常占藻类干重的2~20%,个别藻类如葡萄藻能占细胞干重的40%。通常,聚集脂类比水要轻。它们在细胞中的存在会减少藻类的平均密度。在严重缺氮条件下,淡水藻类通过积累脂类而漂浮在其它一些藻类中,通过提高类胡萝卜素含量增加浮力。
总之,藻类通过悬浮机制使自己尽可能停留在水体表面,以获得生长的机会,造成了藻类上多下少的垂直分布。光强沿水深逐步减弱光合作用沿水深逐步减慢,使藻类生产力沿水深逐步减少。由于藻类垂直分布和光强向减弱的联合作用,使藻类生长主要集中在2~3倍透明度以上的水体中。
铜绿微囊藻在自然水体中的最大含量在水体透明度2~3倍处藻类最多。在无光、静水条件下,上浮速度小于1cm/min的占77%、上浮速度介于1~1.5cm/min之间的1%,上浮速度大于1.5~2cm/min占6%,上浮速度大于2cm/min的占7%,个体越小上浮速度越慢。
& && && && && & 藻毒素
一、& & & & 藻毒素的结构、种类及性质
藻毒素的种类很多,主要分肝毒素、神经毒素、脂多糖毒素三类。其中肝毒素又分为微囊藻毒素(Microcrystin)和节球藻毒素(Nodularin)此类毒素最强。目前水体中最普遍造成污染的就是微囊藻毒素简称MC。MC是蓝藻的某些品种或品系中产生的次生代谢物,系单环肽肝毒素分子量较大(800~1100),其基本结构为环状(D–丙氨酸–L–X–赤–B–甲基–D–异天冬氨酸–C–L–ADDA–D–异谷氨酸–N–甲基氢丙氨酸)如图所示
微囊藻毒素MC–LR和MC–RR的结构式
图中所示的ADDA(3–氨基–9–甲氧基–2,6、8–三甲基–10–苯基–4,6–二烯酸)是表达藻毒素生物活性的必须基团,ADDA氨基酸的共轭立体结构会影响其毒性;两种可变的L–氨基酸(X和Y)的不同以及其它氨基酸的甲基化/去甲基化产生的差异,可以衍生出不同的异构体,目前以发现70多种微囊藻毒素,其中存在较普遍、含量较多、毒性较大的是MCLR、MCYR、MCRR,L、R、Y分别代表亮氨酸、精氨酸、酪氨酸。
由于环状结构和间隔双键的存在,MC在水中非常稳定,不挥发,抗pH变化,易溶于水,在水中的溶解度达1000mg/L以上。不易被吸附于颗粒悬浮物或沉积物中。MC在几种常见的酶,如胃蛋白酶、胰凝乳蛋白酶中不水解。在去离子水中可在较长一段时间内(27天)仍保持稳定。MC具有良好的热稳定性,加热到300℃仍不被破坏,甚至在高压灭菌锅120℃条件下高压灭菌30min仍不分解。干燥的MC在室温下可完好保存数年。
MC分子结构中含有羟基、氨基和酰氨基,所以在不同pH条件下,MC有不同的离子化倾向。例如MCLR在pH<2.09时净电荷为正一价,2.09<pH<2.19时净电荷为零,2.19<pH12.48时净电荷为负一价,pH>12.48时净电荷为负二价。MCLR的正辛醇/水分配系数(㏒Dow)从pH值为1的2.18到pH值为10的–1.76。因此在暴发水华时的高pH>8条件下,MC的生物富集效应较小,同时,MC分子的ADDA基团有了B、r双键易被氧化生物降解。在光照和色素存在时可发生分解。
二、& & & & 藻毒素产生的机理
藻类产生MC的原因及其控制因素是目前研究的热点之一。尽管目前还不能确定蓝藻为什么会产生毒素,但藻毒素的生理作用是进化和自我保护需要已达成共识。关于MC的产生机理主要有以下两种观点:一是环境因子影响或改变毒性。另一种是基因决定,既微囊藻分有毒株和无毒株两种。
影响微囊藻毒素合成的环境因子较多,主要的有光照、温度、pH值和营养元素等。Van derwesthuinzen等认为温度和光照对毒素均有影响,但温度的作用更大。他们发现Maeruginosa Uv–006株在不同温度时毒性表现不同,3种毒素的含量也不同,温度不改变毒素结构,但改变毒素浓度。Utkllen发现温度在高强光下对毒素的产生几乎无影响,而在低光强下温度才会影响毒素的产生。因此,他认为光能是毒素产生的一个重要限制因子,甚至是唯一的因子,究竟那个因子起主导作用。目前并无一致的看法,而在营养盐中,不同种类的营养盐作用不一,氮和碳影响不明显,磷的影响明显。微量元素中AL、Cd、Cr、Cu、Mn、Na和Su对毒素产生无影响,而Fe和Zn影响极明显。这些环境因子主要通过作用于细胞分裂速度而控制毒素的产生,而不是直接作用于毒素产生的代谢途径,而且细胞分裂速度和毒素产生率之间存在一定的线性相关关系。
持毒素基因决定论者认为,微囊藻有毒株(ToxicStrains)和无毒株
二星工程师, 积分 776, 距离下一级还需 24 积分
土木币3369
(Nontoxic Strains)具有不同的基因其毒性是遗传决定的,而且微囊藻有毒株和无毒株的遗传差异在于是否存在一种或几种编码毒素合成酶的基因。微囊藻毒素的合成可能是受到基因直接调控的多肽合成酶影响而间接受到基因的调控。环境因子则通过铜绿微囊藻染色体中分离出了产生微囊藻毒素的DNA片段Mcy。发现凡是能够产生藻毒素的藻种都含有Mcy基因。藻毒素的合成由它控制,并由肽合成酶复合体催化合成,但不产生藻毒素的藻种有的也含有Mcy基因,说明环境因子的改变可以调节和控制基因的表达。
无论基因决定论和环境决定论都不是孤立的,实际上它们是相互联系相互作用的。虽然遗传因子在毒藻产生毒素时有重要的直接生理控制作用,但环境因子可以在具体条件下直接影响基因的表达从而间接控制产毒特性。无毒藻株在一定环境条件下可以产生基因突变转化为产毒株。产毒藻在一定环境条件下也可不产生毒素。
三、藻毒素在水体中的变化迁移规律
微囊藻毒素一般产生并存在于蓝藻细胞内,当藻细胞衰老、死亡和破裂时,才会释放到水体中。
微囊藻的纯培养中,其毒性值变化的大致规律是;在对数生长期,MC主要存在于细胞内,浓度逐渐增大,在对数生长后期。MCRR、MCYR和MCLR含量均达到最大值,且MCRR增加量最多,达到最大生长后,总毒素水平继续增加,但发生了再分布。大量的MC出现于细胞外环境中,进入稳定期后,细胞外毒素均开始下降;藻类达到最大水平并发生自溶,大部分的MC释放于环境中。此时存在于固型物(包括藻和其它微生物)中的藻毒素量与存在于水中的藻毒素量呈反向变化关系。
另有实验研究表明,在蓝藻对数生长期内,水中溶解性毒素仅占总量的10~20%。自然界中水华暴发时,若无溶藻剂或其它影响使其迅速溶解,水体中的藻毒素含量多在0.1~10ug/L,细胞内毒素则会高出几个数量级。
张维昊等系统研究了自然水体中藻毒素归趣,发现光降解是自然水体中藻毒素降低的主要原因,同时微生物、生物积累、颗粒物吸附也是藻毒素维持低浓度的原因。蓝藻细胞内毒素在日光照射下可以改变侧链ADDA的双键异结构而使其毒性明显降低,半衰期约为10d,但纯微囊藻毒素在日光照射下却是稳定的,环境水体中水溶性细胞色素和腐殖质等光敏剂的存在,可提高光解速率。
生物降解也是MC转化的主要途径。MC化学性质稳定,不易被真核生物和细菌肽酶分解,但由于MC分子的ADDA基团有不饱和双键能被天然水体中某些特殊细菌降解。金丽娜等在MC提取液中加入滇池底泥5~7d后MC完全消失。Cousins等发现在天然水体中的MCLR于1周内大部分降解,而在去离子水中则可稳定27天以上,灭菌天然水则12d,上述研究表明,释放至水体中的MC可以在光照和微生物的作用下逐渐降解,但这一过程较缓慢,一般持续数天至数周。
& &蓝藻细胞产生的藻毒素在释放天然水体后,由于大量水体的稀释作用以及光照和微生物的降解作用,使其在天然水体中一般维持较低浓度,但严重的大面积水华发生后会使水体中的藻毒素浓度大幅上升,从而威胁饮用水安全。
三、& & & & 藻毒素的危害
& &对MC的研究之所以受重视是与它们的危害分不开的。目前的研究表明微囊藻毒素作用的靶器官为肝脏,它能作用于肝脏的两种细胞,即肝细胞和肝巨噬细胞,具有较高的细胞选择性和专一生物活性。
& &微囊藻毒素进入肝细胞后,能强烈抑制蛋白磷PP1和PP2A的活性,相应地增强了蛋白酶的活性。导致细胞内多种蛋白质的过磷酸化,打破了细胞内蛋白磷酸化/脱磷酸化的平衡,并通过细胞信号系统进一步放大这种生化效应。改变了多种酶的活性,造成了细胞内一系列生理生化反应的紊乱,从而引起肝细胞骨架破坏,导致肝脏出血坏死最终引起死亡。
& &&&微囊藻毒素还能作用于肝巨噬细胞,诱导白细胞素1(1L–1)的产生。1L–1再诱导引起急性炎症的物质。如前列腺素、血栓素及肿瘤坏死因子(TNF–£)。这些物质导致了肝损伤和坏死。此外,MC还是一种潜在的肿瘤促进剂,它通过影响细胞间隙通讯和信号传导等遗传外过程而诱发肿瘤。Rao报道MCLR可导致体外培养的原代肝细胞DNA损伤。
&&动物通过直接接触或饮用含有MC的水会出现腹泻、呕吐、乏力、呼吸急促、厌食、口眼分泌物增多等症状,甚至病理病变导致肝脏肿大出血或坏死,并呼吸阻塞而死亡。人体直接接触含有毒素的水(如游泳、划船等),会引起急性胃肠炎、长期饮用会引起肝癌等
相关专题:
8-1(商易宝)
8-2(英才网)
8-3(媒体广告)}

我要回帖

更多关于 化能自养菌 的文章

更多推荐

版权声明:文章内容来源于网络,版权归原作者所有,如有侵权请点击这里与我们联系,我们将及时删除。

点击添加站长微信