求下列函数反函数怎么求

据魔方格专家权威分析,试题“为研究“原函数图象与其反函数图象的交点是否在直线y=x上”这个课题..”主要考查你对  反函数向量数量积的运算动点的轨迹方程圆锥曲线综合  等考点的理解。关于这些考点的“档案”如下:

现在没空?点击收藏,以后再看。

  • (1)将y=f(x)看成方程,解出x=f-1(y);
    (3)写出反函数的定义域(可根据原函数的定义域或反函数的解析式确定);
    另外:分段函数的反函数可以分别求出各段函数的反函数再合成。

  • 求动点的轨迹方程的基本方法:

    直接法、定义法、相关点法、参数法、交轨法等。
    如果动点运动的条件就是一些几何量的等量关系,这些条件简单明确,不需要特殊的技巧,易于表述成含x,y的等式,就得到轨迹方程,这种方法称之为直接法;
    用直接法求动点轨迹一般有建系,设点,列式,化简,证明五个步骤,最后的证明可以省略,但要注意“挖”与“补”。求轨迹方程一般只要求出方程即可,求轨迹却不仅要求出方程而且要说明轨迹是什么。
    利用所学过的圆的定义、椭圆的定义、双曲线的定义、抛物线的定义直接写出所求的动点的轨迹方程,这种方法叫做定义法.这种方法要求题设中有定点与定直线及两定点距离之和或差为定值的条件,或利用平面几何知识分析得出这些条件。定义法的关键是条件的转化——转化成某一基本轨迹的定义条件;
    动点所满足的条件不易表述或求出,但形成轨迹的动点P(x,y)却随另一动点Q(x′,y′)的运动而有规律的运动,且动点Q的轨迹为给定或容易求得,则可先将x′,y′表示为x,y的式子,再代入Q的轨迹方程,然而整理得P的轨迹方程,代入法也称相关点法。一般地:定比分点问题,对称问题或能转化为这两类的轨迹问题,都可用相关点法。
    求轨迹方程有时很难直接找到动点的横坐标、纵坐标之间的关系,则可借助中间变量(参数),使x,y之间建立起联系,然而再从所求式子中消去参数,得出动点的轨迹方程。用什么变量为参数,要看动点随什么量的变化而变化,常见的参数有:斜率、截距、定比、角、点的坐标等。要特别注意消参前后保持范围的等价性。多参问题中,根据方程的观点,引入n个参数,需建立n+1个方程,才能消参(特殊情况下,能整体处理时,方程个数可减少)。
    求两动曲线交点轨迹时,可由方程直接消去参数,例如求两动直线的交点时常用此法,也可以引入参数来建立这些动曲线的联系,然而消去参数得到轨迹方程。可以说是参数法的一种变种。用交轨法求交点的轨迹方程时,不一定非要求出交点坐标,只要能消去参数,得到交点的两个坐标间的关系即可。交轨法实际上是参数法中的一种特殊情况。

    (l)建系,设点建立适当的坐标系,设曲线上任意一点的坐标为M(x,y);
    (2)写集合写出符合条件P的点M的集合{M|P(M)};
    (4)化简化方程f(x,y)=0为最简形式;
    (5)证明证明以化简后的方程的解为坐标的点都是曲线上的点, 

  • 直线与圆锥曲线的位置关系:

    (1)从几何角度来看,直线和圆锥曲线有三种位置关系:相离、相切和相交,相离是直线和圆锥曲线没有公共点,相切是直线和圆锥曲线有唯一公共点,相交是直线与圆锥曲线有两个不同的公共点,并特别注意直线与双曲线、抛物线有唯一公共点时,并不一定是相切,如直线与双曲线的渐近线平行时,与双曲线有唯一公共点,但这时直线与双曲线相交;直线平行(重合)于抛物线的对称轴时,与抛物线有唯一公共点,但这时直线与抛物线相交,故直线与双曲线、抛物线有唯一公共点时可能是相切,也可能是相交,直线与这两种曲线相交,可能有两个交点,也可能有一个交点,从而不要以公共点的个数来判断直线与曲线的位置关系,但由位置关系可以确定公共点的个数.
    (2)从代数角度来看,可以根据直线方程和圆锥曲线方程组成的方程组解的个数确定位置关系.设直线l的方程与圆锥曲线方程联立得到ax2+bx+c=0.
    ①若a=0,当圆锥曲线是双曲线时,直线l与双曲线的渐近线平行或重合;当圆锥曲线是抛物线时,直线l与抛物线的对称轴平行或重合.
    当Δ>0时,直线和圆锥曲线相交于不同两点,相交.
    当Δ=0时,直线和圆锥曲线相切于一点,相切.
    当Δ<0时,直线和圆锥曲线没有公共点,相离.

    直线与圆锥曲线相交的弦长公式:

    若直线l与圆锥曲线F(x,y)=0相交于A,B两点,求弦AB的长可用下列两种方法:
    (1)求交点法:把直线的方程与圆锥曲线的方程联立,解得点A,B的坐标,然后用两点间距离公式,便得到弦AB的长,一般来说,这种方法较为麻烦.
    不求交点坐标,可用韦达定理求解.若直线l的方程用y=kx+m或x=n表示.

  • 以上内容为魔方格学习社区()原创内容,未经允许不得转载!

    }

    昨天的文章中提到过反函数的求导法则。反函数的求导法则是:反函数的导数是原函数导数的倒数。这话听起来很简单,不过很多人因此犯了迷糊:

    y=x3的导数是y'=3x2,其反函数是y=x1/3,其导数为y'=1/3x-2/3.这两个压根就不是互为倒数嘛!

    出现这样的疑问,其实是对反函数的概念未能充分理解,反函数是说,将f(x)的自变量当成因变量,因变量当成自变量,得到的新函数x=f(y)就是原函数的反函数。所以y=x3的反函数严格来说应该是x=1/3y-2/3,只不过为了符合习惯,经常将x写成y,y写成x而已,这一点,因为在中学的时候没怎么强调,所以到了大学就有些不适应。因此:

    所以反函数求导法则的意思是说,反函数的导数,等于x对y求导的倒数。我们再以反三角函数来作为例子,希望学到这点的朋友能够真正理解他。

    因为x=siny,所以cosy=√1-x2;(那个啥,这个符号输入有点蛋疼,不过各位应该能看懂) 所以y‘=1/√1-x2。

    同理大家可以求其他几个反三角函数的导数。所以以后在求涉及到反函数的导数时,先将反函数求出来,只是这里的反函数是以x为因变量,y为自变量,这个要和我们平时的区分开。最后将y想法设法换成x即可。

    相信大家对这一点应该有所明白的吧!大家可以试着求y=arctanx的导函数,然后与结果进行对照。

    }

    我要回帖

    更多关于 反比例函数 的文章

    更多推荐

    版权声明:文章内容来源于网络,版权归原作者所有,如有侵权请点击这里与我们联系,我们将及时删除。

    点击添加站长微信