EMIemi电源滤波器器如何设计啊,R,L,C数值怎么确定呀?把其放在整流桥堆之前和之后分别有什么区别?

颜鸣旗下网站
开关电源的EMI
开关电源的EMI
关于电源电磁兼容(EMC)测试一点心得!
<span style="color: #.开关电源的电磁兼容问题研究-开关电源的噪声分类
开关电源的噪声源和负载AC 电网的连接方式如图1 所示。虽然噪声源是个单端口网络,但由于AC 电网具有火线(L) 、中线(N) 和地线( G) ,所以实际上噪声源输给两个AC 线端,即L 端和N 端构成双端口网络。可将它们简化为共模、差模等效电路,都分别对应同一个单端口噪声源,总噪声为共模、差模噪声之和。图1 中ICM表示共模电流的流向, IDM表示差模电流的流向。一个开关电源是直接与传导发射有关的元件(如图2 所示) 。当开关管转为&关&时,集电极与发射极间的电压快速上升达500V ,它产生的电流经集电极与地之间的分布电容返回整流桥。这个按开关频率工作的脉冲串电流是共模噪声。分布电容包含两个支路,其一是开关管外壳和其散热板之间(若接地) ;另一个是变压器原副方向之间(按典型电路方式接地) 。
&&&&& 在10kHz~1MHz 开关频率范围内共模噪声源的并联模型如图3 所示,其电容支路Cp具有比其它任何元件更高的阻抗,是个容性的共模噪声源模型。Cp 典型的容量范围为500~3000p F , Rp & 10k&O(低于500kHz 时) 。共模噪声基本上是由开关频率的谐波组成。
<span style="color: #.开关电源的电磁兼容问题研究-序(引言)
针对现代通信电源中广泛应用的开关电源中存在的传导干扰,提出了共模、差模噪声源模型及
共模、差模噪声的预估方法,并阐述了电源滤波器插入损耗的计算方法,上述理论对电源电磁干扰
( EMI) 滤波器的设计、选用具有直接的指导意义。
关键词:  通信电源 电磁干扰 噪声源模型 电源滤波器 插入损耗
1  引 言
通常,对电源EMC 的研究也是围绕构成
电磁干扰( EMI) 的三要素,即干扰源、干扰传输
途径和干扰接收器来进行的。干扰传输途径包
括辐射发射和传导发射两种。在抗EMI 信号
的辐射危害方面,屏蔽是最好的措施,而对付它
的传导发射,滤波则是一种极为有效的方法。
按照干扰信号对于电路作用的形态不同,
可将电源系统内的干扰分为共模干扰和差模干
扰两种,电源线上的任何传导干扰信号,都可表
示成共模和差模干扰两种方式。本文主要以现
代通信电源中广泛使用的开关电源为对象进行
<span style="color: #.电源变换器(电源转换器)的电磁兼容性分析
EMC(Electromagnetic Compatibility;电磁兼容性)在过去十年间已经成为一个家喻户晓的名词。在90年代中期,欧洲要求降低销售至区内产品的辐射和传导发射水准。此后,许多产品开始在其设计阶段导入EMC测试。而此一趋势一直延续到现今的产品开发中。
一个经常被问到的问题是:什么是EMC?其实,EMC是一种元件、产品或系统在预定的电磁环境(存在于电磁干扰EMI)中正常工作的能力,同时自身不会出现退化及成为干扰源。要设计出这样的功能,必须要遵循EMC标准,而这些标准是由IEC和CISPR等团体所制定的。本文将讨论EMC有关辐射和传导,包括共同(common)模式和差分(differential)模式发射的规定,以及探讨如何设计电力线滤波器以降低输入和输出杂讯,最后再提供一些能够降低杂讯的印刷电路板设计技巧。
为了获得可靠的EMC设计,必须对EMC的要求有所了解。这些要求不只是针对模块电源,同时也是针对欧洲和北美共有的系统级标准。
IEC(国际电工委员会)负责拟定欧洲规格,而CISPR(国际射频干扰特别委员会)则负责采用CISPR 22进行EMC试验,CISPR 22定义了传导发射的最严格限制。这些限制(传导发射)现由产品标准EN55022(图1)和EN55011(图2)描述出来。图1和图2中的A类和B类要求分别指的是工业标准和国内标准(domestic standard)。根据测试杂讯所用天线的不同,欧洲标准设有两种限制。较高限制是针对准峰值天线,较低限制则是针对一般天线,但两种限制都必须达到,以便让设备可以通过要求。北美使用的FCC标准规格与欧洲的EN要求相似,请参考图2。在测试电源供应时使用了两种欧洲标准:EN55011和EN55022。在北美,辐射EMI通常在30MHz至10GHz 频率范围内测量(根据FCC的规定),而传导EMI一般在几个至30MHz的频率范围内测量(根据FCC的规定)。
这里的目的是开发能够满足上述与发射有关的全部或一部份要求的系统,可以是独立的设备,也可以是整合在更大系统中的系统。
2 共同模式和差分模式杂讯
共同模式和差分模式是两种主要的杂讯源。共享模式杂讯来自于共享模式电流。共享模式能量共存于单相系统的两条电源线上,并以相同的方向在所有导线和接地之间以及全部的电源线或导线上传送。由于两根导线同时具有相同的电平,导线之间的设备不会对此产生衰减。
来自共享模式电流的共享模式杂讯一直存在于进入设备的缆线上。降低这个电流的方法之一,就是在原始模型上尽早测试缆线(使得设计者可在设计最后交付生产之前进行一切所需的更改),并且是在进行EMC符合性测试(compliance testing)之前。在许多情况下,如果设备不能通过共享模式电流测试,那么也不会通过辐射发射测试。共享模式电流可以简单地透过带高频箝制的电流探针和频谱分析仪来测试。而响应范围高达250MHz的电流探针就已经足够。
差分模式杂讯是共享模式杂讯的相反。差分模式杂讯是由电流流过带电或中性导体后从另一个导体折射所产生的。这会在带电和中性导体之间产生杂讯电压。
3 交流电力线主滤波器
是一个说明单相交流电源滤波器的范例。这类型的滤波器常用来降低输入和输出电源的差分模式和共享模式杂讯。
电感器L1/L2和电容器C1组成差分滤波器,以应付所有试图进入电源的杂讯。差分模式杂讯是由电流流过带电或中性导体后从另一个导体折射所产生。L1和C1或L2和C1的组合构成了一个分压器。根据杂讯的频率,电容器C1对信号呈现出较小的阻抗(较大负载),因此降低了电源线上的杂讯。举例来说,在特定频率下,L1的等效阻抗是10K,C1的等效阻抗为1K,则透过滤波器的杂讯是其原始强度的十分之一,或降低了20dB的杂讯。
电容器C2和C3构成具有接地参考的共享模式滤波器。在电流与带电和中性导体中的电流同相并经由安全的接地回来时,共同模式杂讯变得明显。这会在带电/中性导体和接地之间产生杂讯电压。C2、C3、C4和C5全部相等,这些线路上的所有共享模式杂讯将被分流至接地。需注意的是,由于有漏电流,B部分不可用于医疗设备。
不带参考的Zorro电感器(共享模式扼流圈)。选择每个绕组的方向以产生相反的电流,能够消除所有杂讯。由共享模式电流引起的磁通量会聚集,并产生阻抗,因此能减少电源线上的杂讯。由于差分模式的电流以不同方向流动,差分模式电流产生的磁通量会相互抵消,所以不会产生阻抗,也不能降低差分模式杂讯。
电容器C1和C16是X类电容器,用以降低差分杂讯,需要能承受电源电压。X类电容器通常在0.01uF至2uF的范围。电容器C2至C5是针对共享模式杂讯的Y类电容器,需要能够保证不会在短路时失效(比X类电容昂贵)。Y类电容器容量值较小,通常在0.002uF至0.1uF之间。
5 降低电源转换器内部和外部杂讯的设计指南
AC至DC电源供应器有三个产生杂讯的领域:
(1)已经存在于AC电源的杂讯进入电源装置(共同模式/差分模式);
(2)电源供应的开关频率引起的(共同模式);
(3)当MOSFET关断时产生的快速切换边缘和由此引起的振铃ringing(共同模式)。
5.1 AC电源
若有杂讯电力主线,则可使用交流(AC)电力线滤波器。在使用交流(AC)电力线滤波器时,应确保将其安装在尽量接近AC电力线进入电路板(PCB)的位置,。滤波器的接地连接也应尽可能的短,以便与电源初级的接地板连接。
为了降低来自进入和离开设备的共享模式和差分模式杂讯,应使用交流(AC)电力线滤波器。见交流(AC)电力线主滤波器部分。
5.2 电源的开关频率
与使用系统时钟的系统一样,许多电源都采用脉宽调变(PWM)组件,在一定频率下工作,用来控制输出电压。因此,系统时钟需要在电路板上小心布局,PWM控制器亦然。
对于使用返驰式、正向或其它拓朴的变压器设计,在初级绕组和开关MOSFET的漏极之间的设计,让引线尽可能宽和尽可能短是非常重要的,。这可缩短电感通路并保持振铃降至最低水准。最好同时将MOSFET和PWM控制器连至接地板,使接地板上的孔量减至最少(而不要看起来像瑞士乳酪)。电流返回的引线旁边应有与其平行布设的接地线(如果没有杂散电容问题),如果杂讯问题依然存在,便除去引线下的接地板,将漏极引线至变压器的电容减至最小。MOSFET开关结构已有寄生电容,会在组件和接地之间灌注电流。如果&绿色线条部分&迹线下的接地板没有去掉,额外的电流便会进入接地板,引起更大的共享模式传导杂讯。
开关MOSFET的源极必须与电源初级的接地板可靠地连接。因此,要为接地端子制作大焊盘,以便使用适当数量的跨接(取决于吸收电流)与接地板可靠地连接。
5.3 PWM切换边缘和并发振铃
为电阻电容二极管(RCD)电路(R1、C1和D1),具有两个作用,首先,C1能减慢Q1在关断时集电极电压的上升时间(平滑、减小辐射EMI);其次,它将输入电压维持在2VCC,即不超过开关MOSFET的击穿电压。在C1够大的情况下,上升的集电极电压和下降的集电极电流相交于很低的位置,因此能大幅降低晶体管的功耗。
C2和R2的振铃电路(ringing circuitry)也很重要,用于减小变压器初级的振铃,该振铃是在MOSFET释放输入电压的电源时所引起。
作为第一个试点,以下是确定C2和R2值的一个方法:
(1)确定振铃波形的频率并计算周期;
(2)将第一步确定的周期乘以5;
(3)设定电阻的数值(通常小于100R);
(4)使用第二步获得的数值除以第三步确定的电阻
使用电阻R2和电容C2网络的优点是降低振铃,但缺点是透过电容器C2的高频纹波会以热方式耗散在电阻R2上。如果降低噪音比效率来得重要,则可采用,否则会降低效率。
6 印刷电路板设计指南
(1)要适当地放置和确定组件的方向;
(2)如果使用散热器,务必将其接地;
(3)可能需要使用组件屏蔽;
(4)共享模式电容器的ESR值要小,并缩短接地的引线长度;
(5)如果在变压器上跨接缓冲器电路来减慢MOSFET开关关断的上升时间,请记得要缩短漏极和两个源级变压器引线端的迹线长度。可能的话,将缓冲器电路设在两个初级引线端之间;
(6)避免在接地板和电源板(如果使用)中使用插槽;
(7)在50MHz以下(要考虑PWM控制器的谐波)传统的去耦方法是有效的。可在靠近IC电源和接地引线端附近使用一或两个去耦电容器(一般为0.1或0.01uF)。考虑在IC和去耦电容之间形成的环路区域,并放置电容器将环状区域缩至最小;
(8)使接地线尽可能的短及厚;
(9)避免迹线上出现尖角;
(10)在需要屏蔽的情况下,尽可能地将所有杂讯组件集中于同一区域;
(11)如果可以的话,使用多层印刷电路板。
7 医疗设备的安全性
对于应用敏感的设备如医疗领域等,共享模式杂讯确实是个问题。假如设备与病人接触,系统总体漏电流会被限定为100uA以下,这意味着大多数电源设计人员需要将漏电流限制在20至40uA。为了满足这项严格要求,医疗设备不会使用具电容器接地的共享模式滤波器。利用共享模式扼流圈,透过电容器(高频杂讯被分流到底板地chassis ground而不是信号地)馈送到接地,并增加变压器或在电源中隔离电源线,可以降低这些共享模式传导的发射脉冲。医疗设备会使用IEC950/UL1950 II类的安全标准。
EMC是当今系统设计中一个重要的考虑因素,其规则会随着时间而变得更加严格。记得在发生切换时,杂讯也会出现,无论是传导杂讯还是辐射杂讯。本文介绍了能降低杂讯的电路板级技术。如果需要进一步降低杂讯,尤其是在辐射方面,使用导电外壳是不错的选择。当然,这些方法会增加额外成本。设计工程师必需评估标准符合性、安全符合性及最终产品的成本。
<span style="color: #.磁珠及其在开关电源中抑制电磁干扰的应用
&由于电磁兼容的迫切要求,电磁干扰(EMI)抑制元件获得了广泛的应用。然而实际应用中的电磁兼容问题十分复杂,单单依靠理论知识是完全不够的,它更依赖于广大电子工程师的实际经验。为了更好地解决电子产品的电磁兼容性这一问题,还要考虑接地、电路与PCB板设计、电缆设计、屏蔽设计等问题。本文通过介绍磁珠的基本原理和特性来说明它在开关电源电磁兼容设计中的重要性与应用,以期为设计者在设计新产品时提供必要的参考。&
&&1.磁珠及其工作原理
&&&&& 磁珠的主要原料为铁氧体,铁氧体是一种立方晶格结构的亚铁磁性材料,铁氧体材料为铁镁合金或铁镍合金,它的制造工艺和机械性能与陶瓷相似,颜色为灰黑色。电磁干扰滤波器中经常使用的一类磁芯就是铁氧体材料,许多厂商都提供专门用于电磁干扰抑制的铁氧体材料。这种材料的特点是高频损耗非常大,具有很高的导磁率,它可以使电感的线圈绕组之间在高频高阻的情况下产生的电容最小。铁氧体材料通常应用于高频情况,因为在低频时它们主要呈现电感特性,使得损耗很小。在高频情况下,它们主要呈现电抗特性并且随频率改变。实际应用中,铁氧体材料是作为射频电路的高频衰减器使用的。实际上,铁氧体可以较好的等效于电阻以及电感的并联,低频下电阻被电感短路,高频下电感阻抗变得相当高,以至于电流全部通过电阻。铁氧体是一个消耗装置,高频能量在上面转化为热能,这是由它的电阻特性决定的。
&&&&& 对于抑制电磁干扰用的铁氧体,最重要的性能参数为磁导率和饱和磁通密度。磁导率可以表示为复数,实数部分构成电感,虚数部分代表损耗,随着频率的增加而增加。因此它的等效电路为由电感L和电阻R组成的串联电路,电感L和电阻R都是频率的函数。当导线穿过这种铁氧体磁芯时,所构成的电感阻抗在形式上是随着频率的升高而增加,但是在不同频率时其机理是完全不同的。&&& 在高频段,阻抗主要由电阻成分构成,随着频率的升高,磁芯的磁导率降低,导致电感的电感量减小,感抗成分减小,但是,这时磁芯的损耗增加,电阻成分增加,导致总的阻抗增加,当高频信号通过铁氧体时,电磁干扰被吸收并转换成热能的形式消耗掉。在低频段,阻抗主要由电感的感抗构成,低频时R很小,磁芯的磁导率较高,因此电感量较大,电感L起主要作用,电磁干扰被反射而受到抑制,并且这时磁芯的损耗较小,整个器件是一个低损耗、高品质因素Q特性的电感,这种电感容易造成谐振,因此在低频段时可能会出现使用铁氧体磁珠后干扰增强的现象。
&&&&& 磁珠种类很多,制造商会提供技术指标说明,特别是磁珠的阻抗与频率关系的曲线。有的磁珠上有多个孔洞,用导线穿过可增加元件阻抗(穿过磁珠次数的平方),不过在高频时所增加的抑制噪声能力可能不如预期的多,可以采用多串联几个磁珠的办法。
&&&&& 值得注意的是,高频噪声的能量是通过铁氧体磁矩与晶格的耦合而转变为热能散发出去的,并非将噪声导入地或者阻挡回去,如旁路电容那样。因而,在电路中安装铁氧体磁珠时,不需要为它设置接地点。这是铁氧体磁珠的突出优点。&
&&&&2.磁珠和电感
&&2.1 磁珠和电感的区别
&&&&& 磁珠由氧磁体组成,电感由磁芯和线圈组成,磁珠把交流信号转化为热能,电感把交流存储起来,缓慢的释放出去,因此说电感是储能元件,而磁珠是能量转换(消耗)器件。电感多用于电源滤波回路,磁珠多用于信号回路,磁珠主要用于抑制电磁辐射干扰,而电感用于这方面则侧重于抑制传导性干扰。两者都可用于处理EMC、EMI问题。磁珠是用来吸收超高频信号,例如一些RF电路、PLL、振荡电路、含超高频存储器电路(DDR SDRAM,RAMBUS等)都需要在电源输入部分加磁珠,而电感是一种蓄能元件,用在LC振荡电路、中低频的滤波电路等,其应用频率范围很少超过<span style="color: #MHZ。地的连接一般用电感,电源的连接也用电感,而对信号线则常采用磁珠。&
2.2 片式磁珠与片式电感&
2.2.1片式电感
&&&&& 在电子设备的PCB板电路中会大量使用感性元件和EMI滤波器元件,这些元件包括片式电感和片式磁珠。在需要使用片式电感的场合,要求电感实现以下两个基本功能:电路谐振和扼流电抗。谐振电路包括谐振发生电路、振荡电路、时钟电路、脉冲电路、波形发生电路等。谐振电路还包括高Q带通滤波器电路。要使电路产生谐振,必须有电容和电感同时存在于电路中。在电感的两端存在寄生电容,这是由于器件两个电极之间的铁氧体本体相当于电容介质而产生的。在谐振电路中,电感必须具有高品质因素Q,窄的电感偏差,稳定的温度系数,才能达到谐振电路窄带,低的频率温度漂移的要求。高Q电路具有尖锐的谐振峰值。窄的电感偏置保证谐振频率偏差尽量小。稳定的温度系数保证谐振频率具有稳定的温度变化特性。标准的径向引出电感和轴向引出电感以及片式电感的差异仅仅在于封装不一样。电感结构包括介质材料(通常为氧化铝陶瓷材料)上绕制线圈,或者空心线圈以及铁磁性材料上绕制线圈。在功率应用场合,作为扼流圈使用时,电感的主要参数是直流电阻(DCR,定义为元件在没有交流信号下的直流电阻)、额定电流和低Q值。当作为滤波器使用时,希望宽的带宽特性,因此并不需要电感的高Q特性,低的直流电阻(DCR)可以保证最小的电压降。&
&&&&&2.2.2 片式磁珠&
&&&&& 片式磁珠是目前应用、发展很快的一种抗干扰元件,廉价、易用,滤除高频噪声效果显著。片式磁珠由软磁铁氧体材料组成,实质上它就是<span style="color: #个叠层型片式电感器,是由铁氧体磁性材料与导体线圈组成的叠层型独石结构。由于在高温下烧结而成,因而具有致密性好、可靠性高等优点。两端的电极由银/镍/焊锡<span style="color: #层构成,可满足再流焊和波峰焊的要求。&
&&&&& 片式磁珠不仅具有小型化和轻量化的优点,而且在射频噪声频率范围内具有高阻抗特性,可以消除传输线中的电磁干扰。片式磁珠能够降低直流电阻,以免对有用信号产生过大的衰减。片式磁珠还具有显著的高频特性和阻抗特性,能更好的消除RF能量。在高频放大电路中还能消除寄生振荡。有效的工作在几个MHz到几百MHz的频率范围内。
&&&&& 片式磁珠在过大的直流电压下,阻抗特性会受到影响,另外,如果工作温升过高,或者外部磁场过大,磁珠的阻抗都会受到不利的影响。&
&2.2.3 片式电感与片式磁珠的使用
&&&& &是使用片式磁珠还是片式电感主要还在于应用。在谐振电路中需要使用片式电感,而在需要消除不需要的EMI噪声时,则使用片式磁珠是最佳的选择。片式电感的应用场合主要有:射频(RF)和无线通讯,信息技术设备,雷达检波器,汽车电子,蜂窝电话,寻呼机,音频设备,PDAs(个人数字助理),无线遥控系统以及低压供电模块等。片式磁珠的应用场合主要有:时钟发生电路,模拟电路和数字电路之间的滤波,I/O输入/输出内部连接器(比如串口、并口、键盘、鼠标、长途电信、本地局域网等),射频(RF)电路和易受干扰的逻辑设备之间,供电电路中滤除高频传导干扰,计算机,打印机,录像机,电视系统和手提电话中的EMI噪声抑止。&
&&3. 磁珠的选用与应用&
&&&&& 由于铁氧体磁珠在电路中使用能够增加高频损耗而又不引入直流损耗,而且体积小、便于安装在区间的引线或者导线上,对于<span style="color: #MHz以上的噪声信号抑制效果十分明显,因此可用作高频电路的去耦、滤波以及寄生振荡的抑制等。特别对消除电路内部由开关器件引起的电流突变和滤波电源线或其它导线引入电路的高频噪声干扰效果明显。低阻抗的供电回路、谐振电路、丙类功率放大器以及可控硅开关电路等,使用铁氧体磁珠进行滤波都是十分有效的。铁氧体磁珠一般可以分为电阻性和电感性两类,使用时可以根据需要选取。单个磁珠的阻抗一般为十至几百欧姆,应用时如果一个衰减量不够时可以用多个磁珠串联使用,但是通常三个以上时效果就不会再明显增加了。&
&&&&& 由于任何传输线都不可避免的存在着引线电阻、引线电感和杂散电容,因此,一个标准的脉冲信号在经过较长传输线后,极易产生上冲及振铃现象。大量的实验证明,引线电阻可使脉冲的平均振幅减小,而引线电感和杂散电容的存在,则是产生上冲和振铃的根本原因。在脉冲前沿上升时间相同的条件下,引线电感越大,上冲及振铃现象就越严重,杂散电容越大,则使波形的上升时间越长,而引线电阻的增加,将使脉冲的振幅减小。在实际电路中,可以利用串联电阻的方法来减小和抑制上冲及振铃。&
&&&&& 铁氧体抑制元件还广泛应用于印制电路板、电源线和数据线上。如在印制板的电源线入口端加上铁氧体磁珠,就可以滤除高频干扰。铁氧体磁环或磁珠专用于抑制信号线、电源线上的高频干扰和尖峰干扰,它也具有吸收静电放电脉冲干扰的能力。两个元件的数值大小与磁珠的长度成正比,而且磁珠的长度对抑制效果有明显影响,磁珠长度越长抑制效果越好。
&&&&& 普通滤波器是由无损耗的电抗元件构成的,它在线路中的作用是将阻带频率反射回信号源,所以这类滤波器又叫反射滤波器。当反射滤波器与信号源阻抗不匹配时,就会有一部分能量被反射回信号源,造成干扰电平的增强。为解决这一弊病,可在滤波器的进线上使用铁氧体磁环或磁珠套,利用磁环或磁珠对高频信号的涡流损耗,把高频成分转化为热损耗。因此磁环和磁珠实际上对高频成分起吸收作用,所以有时也称之为吸收滤波器。
&&&&& 不同的铁氧体抑制元件,有不同的最佳抑制频率范围。通常磁导率越高,抑制的频率就越低。此外,铁氧体的体积越大,抑制效果越好。在体积一定时,长而细的形状比短而粗的抑制效果好,内径越小抑制效果也越好。但在有直流或交流偏流的情况下,还存在铁氧体饱和的问题,抑制元件横截面越大,越不易饱和,可承受的偏流越大。
&&&&& EMI吸收磁环/磁珠抑制差模干扰时,通过它的电流值正比于其体积,两者失调造成饱和,降低了元件性能;抑制共模干扰时,将电源的两根线(正负)同时穿过一个磁环,有效信号为差模信号,EMI吸收磁环/磁珠对其没有任何影响,而对于共模信号则会表现出较大的电感量。磁环的使用中还有一个较好的方法是让穿过的磁环的导线反复绕几下,以增加电感量。可以根据它对电磁干扰的抑制原理,合理使用它的抑制作用。
&&&&& 铁氧体抑制元件应当安装在靠近干扰源的地方。对于输入/输出电路,应尽量靠近屏蔽壳的进、出口处。对铁氧体磁环和磁珠构成的吸收滤波器,除了应选用高磁导率的有耗材料外,还要注意它的应用场合。它们在线路中对高频成分所呈现的电阻大约是十至几百欧姆,因此它在高阻抗电路中的作用并不明显,相反,在低阻抗电路(如功率分配、电源或射频电路)中使用将非常有效。&
&&&&4.结论
&&&& &近年来,由于电磁兼容的迫切要求,铁氧体磁珠得到了广泛的应用,尤其是片式铁氧体磁珠。在各种现代电子产品中,为了达到电磁兼容的要求,几乎都采用了这类元件。但值得注意的是,这类元件品种繁多,性能各异,不像阻容元件那样的系列化、标准化,所以,必须全面了解各种铁氧体磁珠的特性,并根据实际情况,恰当的选择与使用这些元件才能收到满意的效果。
<span style="color: #.Boost型功率因数校正器的电磁兼容(EMC)研究
为了减少对交流电网的谐波污染,已经推出了一些限制电流谐波的标准,如IEC ClassD标准,要求必须采取措施降低输入电网的电流谐波含量,提高功率因数。
&&& 传统的二极管和电容对输入信号进行整流滤波时,只在输入交流电压的峰值部分才有输入电流,导致产生了很大的电流谐波含量,严重干扰了电网,远不能达到标准要求。为了使输入电流谐波满足要求,必须加功率因数校正(PFC)。比较成熟且应用广泛的是两级方案,它们有各自的功率器件和控制电路。PFC级使线电流跟随线电压,使线电流正弦化,很容易达到高功率因数,减少谐波含量。尤其是近年来,随着电力电子技术的迅猛发展,大量电力电子装置的应用对电网产生严重的谐波干扰,带来严重的危害。所以各国都提出相应的EMC()标准,严格规定接入电网的设备的谐波干扰的允许水平。我国推行的3C认证标准,要求所有电气产品都必须通过该认证才可以出售,其中该标准很重要的部分就是EMC标准。
1&&& 电源参数
&&& 大量接入电网的用电设备都是通过把市电整流成直流后供给负载的,而传统常用的是电压型不控整流,也就是二极管桥式整流接大电容平波的方法。这种整流电路是一种非线性器件和储能元件的组合,虽然输入交流电压是正弦的,但是二极管导通角非常小,输入电流畸变严重,呈脉冲状,如图1所示。
图1&&& 输入电流、电压波形
&&& PFC技术就是通过在不控整流电路中加入DC/DC开关变换器,应用电流反馈技术,使输入端电流波形能跟踪交流输入电压波形,从而使输入端电流接近正弦。本文讨论典型的Boost型PFC电路设计中的电磁兼容问题。
&&& 该PFC电路的技术参数为:
&&& 输入&&& 交流150~270V,50~60Hz;
&&& 输出&&& 直流380~400V,纹波&5%;
&&& 功率&&& 600W;
&&& 开关频率&&& 100kHz;
&&& 校正后&&& &0.99。
&&& 电路基本原理图如图2所示。
图2&&& 基于UC3854的功率因数校正器原理图
2&&& 基于UC3854的PFC工作原理
&&& 本设计是工作于电感电流连续模式(CCM)下的Boost电路,采用的是Unitrode公司的专用PFC芯片UC3854。该芯片的核心是一个模拟乘法器,其输出电流Imo的幅值由电压环输出决定,而波形由输入电压的采样Iac决定,在电路稳定时,有ImoRmo正比于IiRs。因为Imo是与输入电压同相的正弦波,所以Ii也是正弦波,这样也就实现了PFC。
&&& 主电路基本参数为:输入Boost电感L=1mH,C=470&F,最大输入电流有效值为4A,开关管为IRF460,二极管为快恢复二极管RHRP1560。
3&&& Boost型PFC的问题
3.1&&& 电磁干扰源[1]
&&& 本电路的主要电磁干扰源有多种,最主要的是开关功率器件和变流电路在开关过程中引起的电磁噪声。电力电子装置无论是主电路的功率半导体器件,还是控制电路的高速集成电路,在器件开关过程中,都存在着很高的di/dt,它们通过线路或元器件的引线电感引起瞬态电磁噪声,频率可高达几十kHz甚至几百kHz,是不可忽视的噪声源。下面对干扰源一一分析。
&&& IRF460为功率场效应管(MOSFET),属于多子器件,不存在反向恢复问题,但是他的开关速度很高,开关过程中产生的di/dt(dv/dt)可达很高的数值,作用在电路中的寄生电感(电容)上,会产生很高的瞬态电压、电流和引起振荡。如设开关时间为10ns,引线电感为500nH,开关过程中最大的电流可以达到6A,则引线上产生的电压为
&&& 500&10-9& =300V
&&& 如此大的脉冲电压(电流)会造成严重的电磁干扰。
&&& 二极管开关过程中也会产生噪声。二极管开通时电流迅速增大,但是其管压降不是立即下降,而是出现一个快速的上冲,则导致一个宽带的。而在关断时,由于PN结长基区中大量过剩少数载流子需要复合,从而产生很大的反向恢复电流,此电流与关断电流和关断速度成正比。在高速、大电流情况下,该反向电流会相当大,而且在开通时叠加在开关电流上,严重时会把开关器件烧毁。所以必须选用有快恢复特性的二极管,尽量减少反向恢复电流。
3.2&&& 电磁干扰的耦合途径[1]
&&& 高频开关电源造成的电磁噪声耦合到被干扰对象有两种方式:传导方式和辐射方式。根据电磁噪声耦合特点,传导耦合可分为直接传导耦合、公共阻抗耦合和转移阻抗耦合三种。本电路中,直接传导耦合、公共阻抗耦合和辐射耦合是应该重点考虑的。
&&& 直接传导耦合是指噪声通过导线或寄生元件等直接耦合到被干扰对象,如Ldi/dt可以通过导线耦合。所以,在实验电路中,应该尽量缩短导线的长度。当然,最佳的方法是应用零电流开关(ZCS)软开关技术。
&&& 公共阻抗传导耦合是噪声通过设备的公共接地线以及接地网络中的公共阻抗产生公共地阻抗耦合。如果地线安排不当,地线会受到很大的干扰,通常可以检测到幅值高达几V的毛刺,电路也就不能正常工作了。所以,应该合理安排接地,尽量把地线安排较短,而且功率地和信号地分开。经过这样处理之后,地线上的毛刺将明显得到抑制。
&&& 辐射耦合是指电磁噪声的能量,以电磁场能量的形式,通过空间辐射传播,耦合到被干扰的设备(电路)。在本电路里,开关和二极管是最大的电磁噪声源,电磁噪声会辐射到电路的其他部分。被干扰电路接受电磁噪声的能量与该电路回路的面积成正比,所以,必须在安排电路器件时尽可能地缩小电路回路的面积。
4&&& 实验结果
&&& 本实验的电路是基于UC3854的Boost型功率因数校正器,工作模式为电流连续模式,输出为380~400V直流电压,输出功率为600W。
&&& 在实验中,要合理安排元器件布局和地线,尽量缩短引线长度和减小主电路回路的面积,主电路和控制电路分开安排。这样,可以得到很大的改善。从图3、图4实验波形看,基本实现PFC功能,而且波形所受干扰比较小。
图4&&& 输入电流、电压(衰减10倍)波形
&&& 本文通过分析Boost型PFC电路的电磁兼容问题,如、耦合途径等,提出在实际实验中解决的方法,并通过实验验证。
<span style="color: #.软开关技术对减小开关电源电磁干扰-EMI的结论
在开关电源的设计技术中,为了降低开关管的开通和关断损耗,达到提高效率的目的,软开关技术得到了很大而且很成熟的发展,最著名的开关电源软开关技术就是DC-DC变换中主要采用的&FB-ZVS-PWM&(移相全桥零电压脉冲宽度调制),采用这种技术,效率可以达到90%以上。
进入上世纪90年代后,软开关应用于减小开关电源的EMI研究开始增多起来,但曾有文献指出:软开关降低EMI的效果一般在2-3dB,很难超过5dB。
我在读书时,做的研究论文中(采用的是最先进的软开关技术,ZVT,即零电压转换技术,这是第3代软开关技术,也是当前软开关的最尖端技术),也认可上述结论,即软开关对提高效率有决定性的作用,但对降低EMI很难有根本的改善。
很久没有细致研究过这些技术的东东了,不知现在软开关技术应用于减小EMI方面进展如何了?
8.开关电源的电磁兼容设计综述
电磁兼容是指在有限的空间、时间和频谱范围内,各种电气设备共存而不引起性能的下降,它包括电磁骚扰(EMD)和电磁敏感(EMS)两方面的内容。EMD是指电气产品向外发出噪声,EMS则是指电气产品抵抗外来电磁骚扰的能力。一台具备良好电磁兼容性能的设备,应该既不受周围电磁环境的影响也不对周围造成电磁骚扰。
开关电源中的功率开关管在高频下的通、断过程产生大幅度的电压和电流跳变,因而产生强大的电磁骚扰,但骚扰的频率范围(&30MHz)是比较低的。多数小功率开关电源的几何尺寸远小于30MHz电磁场对应的波长(空气介质中约为10m),开关电源系统研究的电磁骚扰现象属于似稳场的范围,研究它们的电磁骚扰问题时,主要考虑的是传导骚扰。
2 电磁骚扰
讨论电磁骚扰一般是从骚扰源的特性,骚扰的耦合通道特性和受扰体的特性三个方面来进行的。
2.1 开关电源中的主要电磁骚扰源
开关电源中的电磁骚扰源主要有开关器件、二极管和非线性无源元件;在开关电源中,印制板布线不当也是引起电磁骚扰的一个主要因素。
2.1.1开关电路产生的电磁骚扰
对开关电源来说,开关电路产生的电磁骚扰是开关电源的主要骚扰源之一。开关电路是开关电源的核心,主要由开关管和高频变压器组成。它产生的dv/dt是具有较大辐度的脉冲,频带较宽且谐波丰富。这种脉冲骚扰产生的主要原因是:
1)开关管负载为高频变压器初级线圈,是感性负载。在开关管导通瞬间,初级线圈产生很大的涌流,并在初级线圈的两端出现较高的浪涌尖峰电压;在开关管断开瞬间,由于初级线圈的漏磁通,致使一部分能量没有从一次线圈传输到二次线圈,储藏在电感中的这部分能量将和集电极电路中的电容、电阻形成带有尖峰的衰减振荡,叠加在关断电压上,形成关断电压尖峰。这种电源电压中断会产生与初级线圈接通时一样的磁化冲击电流瞬变,这个噪声会传导到输入输出端,形成传导骚扰,重者有可能击穿开关管。
2)脉冲变压器初级线圈,开关管和滤波电容构成的高频开关电流环路可能会产生较大的空间辐射,形成辐射骚扰。如果电容滤波容量不足或高频特性不好,电容上的高频阻抗会使高频电流以差模方式传导到交流电源中形成传导骚扰。
2.1.2 二极管整流电路产生的电磁骚扰
主电路中整流二极管产生的反向恢复电流的|di/dt|远比续流二极管反向恢复电流的|di/dt|小得多。作为电磁骚扰源来研究,整流二极管反向恢复电流形成的骚扰强度大,频带宽。整流二极管产生的电压跳变远小于电源中的功率开关管导通和关断时产生的电压跳变。因此,不计整流二极管产生的|dv/dt|和|di/dt|的影响,而把整流电路当成电磁骚扰耦合通道的一部分来研究也是可以的。
2.1.3 dv/dt与负载大小的关系
功率开关管开通和关断时产生的dv/dt是开关电源的主要骚扰源。经理论分析及实验表明,负载加大,关断产生的|dv/dt|值加大,而负载变化对开通的|dv/dt|影响不大。由于开通和关断时产生的|dv/dt|不同,从而对外部产生的骚扰脉冲也是不同的。
2.2 开关电源电磁噪声的耦合通道
描述开关电源和系统传导骚扰的耦合通道有两种方法:1)将耦合通道分为共模通道和差模通道;2)采用系统函数来描述骚扰和受扰体之间的耦合通道的特性。本文采用第一种方法进行论述。
2.2.1 共模和差模骚扰通道
开关电源在由电网供电时,它将从电网取得的电能变换成另一种特性的电能供给负载。同时开关电源又是一噪声源,通过耦合通道对电网、开关电源本身和其它设备产生骚扰,通常多采用共模和差模骚扰加以分析。
&共模骚扰&是指骚扰大小和方向一致,其存在于电源任何一相对大地、或中线对大地间。共模骚扰也称为纵模骚扰、不对称骚扰或接地骚扰。是载流体与大地之间的骚扰。&差模骚扰&是指大小相等,方向相反,其存在于电源相线与中线及相线与相线之间。差模骚扰也称为常模骚扰、横模骚扰或对称骚扰。是载流体之间的骚扰。
共模骚扰说明骚扰是由辐射或串扰耦合到电路中的,而差模骚扰则说明骚扰源于同一条电源电路的。通常这两种骚扰是同时存在的,由于线路阻抗的不平衡,两种骚扰在传输中还会相互转化,情况十分复杂。共模骚扰主要是由|dv/dt|产生的,|di/dt|也产生一定的共模骚扰。但是,在低压大电流的开关电源中,共模骚扰主要是由|dv/dt|产生的还是由|di/dt|产生的,需要进一步研究。
在频率不是很高的情况下,开关电源的骚扰源、耦合通道和受扰体实质上构成一多输入多输出的电网络,而将其分解为共模和差模骚扰来研究是对上述复杂网络的一种处理方法,这种处理方法在某种场合还比较合适。但是,将耦合通道分为共模和差模通道具有一定的局限性,虽然能测量出共模分量和差模分量,但共模分量和差模分量是由哪些元器件产生的,的确不易确定。
因此有人用系统函数的方法来描述开关电源骚扰的耦合通道,即研究耦合通道的系统函数与各元器件的关系,建立耦合通道的电路模型。许多系统分析的结果,如灵敏度的分析、模态的分析等,都可用来研究开关电源的EMD的调试和预测。但是,用系统函数的方法分析骚扰的耦合通道,还需要做很多工作。
2.2.2 杂散参数影响耦合通道的特性
在传导骚扰频段(小于30MHz)范围内,多数开关电源骚扰的耦合通道是可以用电路网络来描述的。但是,在开关电源中的任何一个实际元器件,如电阻器、电容器、电感器乃至开关管、二极管都包含有杂散参数,且研究的频带愈宽,等值电路的阶次愈高,因此,包括各元器件杂散参数和元器件间的耦合在内的开关电源的等效电路将复杂得多。在高频时,杂散参数对耦合通道的特性影响很大,分布电容的存在成为电磁骚扰的通道。另外,在开关管功率较大时,集电极一般都需加上散热片,散热片与开关管之间的分布电容在高频时不能忽略,它能形成面向空间的辐射骚扰和电源线传导的共模骚扰。
3 电磁骚扰的抑制
对开关电源的EMD的抑制措施,主要是1)减小骚扰源的骚扰强度;2)切断骚扰传播途径。为了达到这个目的,主要从选择合适的开关电源电路拓扑;采用正确的接地、屏蔽、滤波措施;设计合理的元器件布局及印制板布线等几个方面考虑。
3.1 减小开关电源本身的骚扰
减小开关电源本身的骚扰是抑制开关电源骚扰的根本,是使开关电源电磁骚扰低于规定极限值的有效方法。
1)减小功率管通、断过程中产生的骚扰
上面分析表明,开关电源的主要骚扰是来自功率开关管通、断的dv/dt。因此减小功率开关管通、断的dv/dt是减小开关电源骚扰的重要方面。人们通常认为软开关技术可以减小开关管通、断的dv/dt。但是,目前的一些研究结果表明软开关并不像人们预料的那样,可以明显地减小开关电源的骚扰。没有实验结果表明,软开关变换器在EMC性能方面明显地优于硬开关变换器。
有文献系统地研究了PWM反激式变换器、准谐振零电流变频开关正激变换器、多谐振零电压变频开关反激式变换器、多揩振零电压变频开关正激变换器、电压箝位多谐振零电压定频开关反激式变换器以及半桥式零电压变频串联谐振变换器的EMD特性,讨论了缓冲电路、箝位电路、变频与定频控制对骚扰水平的影响。实验结果表明,具有电压箝位的零电压定频开关变换器的EMD电平最低。
因此,采用软开关电源技术,结合合理的元器件布置及合理的印制电路板布线,对开关电源的EMD水平有一定的改善。
2)开关频率调制技术
将频率不变的调制改变为随机调制,变频调制等。频率固定不变的调制脉冲产生的骚扰在低频段主要是调制频率的谐波骚扰,低频段的骚扰主要集中在各谐波点上。由F.Lin提出的开关频率调制方法[3],其基本思想是通过调制开关频率fc的方法,把集中在开关频率fc及其谐波2fc,3fc&&上的能量分散到它们周围的频带上,由此降低各个频点上的EMD幅值,以达到低于EMD标准规定的限值。这种开关调频PWM的方法虽然不能降低总的骚扰能量,但它把能量分散到频点的基带上,以达到各个频点都不超过EMD规定的限值。
&接地&有设备内部的信号接地和设备接大地,两者概念不同,目的也不同。&地&的经典定义是&作为电路或系统基准的等电位点或平面&。
3.2.1 设备的信号接地
设备的信号接地,可能是以设备中的一点或一块金属来作为信号的接地参考点,它为设备中的所有信号提供了一个公共参考电位。在这里介绍浮地和混合接地,另外,还有单点接地和多点接地。
采用浮地的目的是将电路或设备与公共接地系统,或可能引起环流的公共导线隔离开来。浮地还可以使不同电位间的电路配合变得容易。实现电路或设备浮地的方法有变压器隔离和光电隔离。浮地的最大优点是抗骚扰性能好。
浮地的缺点是由于设备不与公共地相连,容易在两者间造成静电积累,当电荷积累到一定程度后,在设备地与公共地之间的电位差可能引起剧烈的静电放电,而成为破环性很强的骚扰源。一个折衷方案是在浮地与公共地之间跨接一个阻值很大的泄放电阻,用以释放所积累的电荷。注意控制释放电阻的阻抗,太低的电阻会影响设备泄漏电流的合格性。
2)混合接地
混合接地使接地系统在低频和高频时呈现不同的特性,这在宽带敏感电路中是必要的。电容对低频和直流有较高的阻抗,因此能够避免两模块之间的地环路形成。当将直流地和射频地分开时,将每个子系统的直流地通过10~100nF的电容器接到射频地上,这两种地应在一点有低阻抗连接起来,连接点应选在最高翻转速度(di/dt)信号存在的点。
3.2.2 设备接大地
在工程实践中,除认真考虑设备内部的信号接地外,通常还将设备的信号地,机壳与大地连在一起,以大地作为设备的接地参考点。设备接大地的目的是:
1)保证设备操作人员人身的安全。
2)泄放机箱上所积累的电荷,避免电荷积累使机箱电位升高,造成电路工作的不稳定。
3)避免设备在外界电磁环境的作用下使设备对大地的电位发生变化,造成设备工作的不稳定。
由此可见,设备接大地除了是对人员安全、设备安全的考虑外,也是抑制骚扰发生的重要手段。
抑制开关电源产生的骚扰辐射的有效方法是屏蔽,即用电导率良好的材料对电场屏蔽,用磁导率高的材料对磁场屏蔽。为了防止脉冲变压器的磁场泄露,可利用闭合环形成磁屏蔽,另外,还要对整个开关电源进行电场屏蔽。屏蔽应考虑散热和通风问题,屏蔽外壳上的通风孔最好为圆形多孔,在满足通风的条件下,孔的数量可以多,每个孔的尺寸要尽可能小。
接缝处要焊接,以保证电磁的连续性,如果采用螺钉固定,注意螺钉间距要短。屏蔽外壳的引入、引出线处要采取滤波措施,否则,这些会成为骚扰发射天线,严重降低屏蔽外壳的屏蔽效果。若用电场屏蔽,屏蔽外壳一定要接地,否则,将起不到屏蔽效果;若用磁场屏蔽,屏蔽外壳则不需接地。对非嵌入的外置式开关电源的外壳一定要进行电场屏蔽,否则,很难通过辐射骚扰测试。
电源滤波器安装在电源线与电子设备之间,用于抑制电源线引出的传导骚扰,又可以降低从电网引入的传导骚扰。对提高设备的可靠性有重要的作用。
开关电源产生的电磁骚扰以传导骚扰为主,而传导骚扰又分差模骚扰和共模干扰两种。通常共模骚扰要比差模骚扰产生更大的辐射型EMD。目前抑制传导EMD最有效的方法是利用无源滤波技术。
作为一种双端口网络EMD滤波器,它对骚扰的抑制性能不仅取决于滤波器本身的拓扑,而且在很大程度上也受EMD滤波器输入、输出阻抗值的影响。由于EMD滤波器阻抗和负载阻抗的可变动性以及它们可能直接与电网相连的特点,电源EMD滤波器的输入、输出阻抗不但不匹配而且常常是末知的。这就造成了EMD滤波器设计不能完全应用成熟的通信用滤波器的设计方法和理论。这是电源波波器设计面临的主要问题。
3.5 元器件布局及印制电路板布线
开关电源的辐射骚扰与电流通路中的电流大小,通路的环路面积,以及电流频率的平方等三者的乘积成正比,即辐射骚扰EI?A?f2&。运用这一关系的前提是通路尺寸远小于频率的波长。
上述关系式表明减小通路面积是减小辐射骚扰的关键,这是说开关电源的元器件要彼此紧密排列。在初级电路中,要求输入端电容、晶体管和变压器彼此靠近,且布线紧凑;在次级电路中,要求二极管、变压器和输出端电容彼此贴近。
在印制板上,将正负载流导线分别布在印制板的两面,并设法使两个载流导体彼此间保持平行,因为平行紧靠的正负载流导体所产生的外部磁场是趋向于相互抵消的。
布线间的电磁耦合是通过电场和磁场进行的,因此在布线时,应注意对电场与磁场耦合的抑制。对电场的抑制方法有:1)尽量增大线间距离,使电容耦合为最小;2)采用静电屏蔽,屏蔽层要接地;3)降低敏感线路的输入阻抗。
对磁场的抑制方法有:1)减小骚扰源和敏感电路的环路面积;2)增大线间距离,使耦合骚扰源与敏感电路间的互感尽可能地小;3)最好使骚扰源与敏感电路呈直角布线,以便大大降低线路间耦合。
开关电源电磁兼容设计的目的是使产品在一定的电磁环境下正常工作,也就是说,电源产品应满足标准规定的抗扰度极限值要求,在受到一定的电磁骚扰时,无性能的下降或故障;同时,电源产品满足标准规定的电磁极限值要求,对电磁环境不构成污染源,而实现电磁兼容。
9.基于TOPSwitCh的电磁兼容性EMC设计
随着现代逆变技术的发展.开关电源正向着高频化、小型化的方向发展:在此基础上开发出的三端隔离、脉宽调制型反激式单片开关电源,集成了高压M0SFET、振荡器、脉宽调制器、闭环控制电路以及限流、过热保护功能的集成芯片。以其为核心构成的单片开关电源外围电路简单,输入电压范围宽,达到85~265V,电能转换效率达到90%,已被广泛应用于中小功率开关电源中。
TOPSwitch单片电源应用频率一般在20kHz以上,这样对前级电路(通常是电网)带来很大的电磁干扰问题,危及其他电气设备的正常运行;而且其本身产生的干扰直接危害到电子设备的正常工作。为此必须对电路进行电磁兼容(EMC)设计,使电磁干扰问题限制在允许的范围内。
本文运用TOP224Y构成一?0W反激变换电路,对其进行了电磁兼容分析,并在多个方面实施EMC优化设计,实验结果表明文中分析的有效性,为反激变换电路的EMC设汁提供了一定的理论根据。
1 电磁兼容分析
根据国际电工委员会(IEC)定义,电磁兼容性是电子设备的一种功能,电子设备在电磁环境中能完成其功能,而不产生不能容忍的干扰。解决EMC问题,主要考虑3个要素,即噪声源、耦合途径、噪声接收机。因此,电磁兼容没计的任务就是消弱千扰源的能量,隔离或减弱噪声耦合途径及提高设备对电磁干扰的抵抗能力。
1.1 共模、差模电路模型分析
单片开关电源的集成度很高,已经通过合理的设计将引线电感和寄生电容参数减小到比较小的水平。电路的共模电磁干扰主要是漏一源电压和输出整流管反向恢复过程产生的,由于高频变压器的分布电容以及芯片对地分布电容的影响,高频电流不能完全抵消,形成共模干扰,其电路模型如图1所示。这种共模干扰可以通过EMI滤波器的共扼电感和Y电容提供高频电流对地泄放通道进行抑制。差模干扰电路模型如图2所示,也可以通过EMI滤波器的X电容进行抑制。
1.2 高频变压器噪声
高频变压器是开关电源中实现能量储存、隔离输出、电压变换的重要元件,同时它的漏感和分布电容对电路的性能带来不可忽略的影响。其等效电路模型如图3所示。
当不考虑变压器的漏感以及开关动作时间时,高频工作下的MOSFET产生的波形是一个标准的方波,如图4所示。
而实际变压器制作中,绕组漏感是不可避免的,由于漏感的存在,当开关闭合时(ton)原边漏感储存了一定的能量(与漏感大小和开关频率有关),当开关关断时(从ton到toff)储存在原边漏感中的能量释放,使得开关器件的两端出现电压关断尖峰,叠加在直流高压V1和感应反射电压VOR上,可使MOSFET的漏极电压超过700V,影响开关工作的可靠性甚至损坏TOPSwitch。考虑变压器漏感时实际电路的波形如图5所示。
1.3 输出整流二极管的尖峰干扰
二极管导通时,在P区和N区分别有少数载流子电子和空穴导电,当突然加反向电压时,存储电荷在反向电场作用下被复合,形成反向恢复电流。由于变压器次级漏感、引线电感及二极管的结电容,在关断电压上叠加了一个衰减振荡电压,形成了关断电压尖峰,如图5所示。对此可以通过外接RC吸收电路抑制二极管电荷存储效应所产生的浪涌电流。
电磁干扰有一定的标准,目前被世界广泛采用的是欧洲的EMC标准,对于开关电源电路可以应用EN55022标准曲线,如图6中虚线所示。图6中上面一条曲线是为考虑EMC设计时的传导E-MI测试曲线,可以看到干扰强度严重超过标准,必须对电路进行相应的抗干扰设计。图7是参加传导EMI测试的反激变换电路,图7中虚线部分是考虑EMC问题而添加的电路部分。
2 优化EMC设计
2.1 输入侧EMC设计
一般开关电源与电网直接相连,高频开关的两端产生浪涌电压,流过一定的浪涌电流,这个电流通过高频变压器原边、直流电容和开关器件形成回路,产生高频辐射干扰;同时高频电流流过一次侧整流电路,产生的脉冲电压叠加在电网电压上,形成差模干扰,对同一线路上的其他设备带来干扰。如图8所示,在开关电源的电源输入端安装电源滤波器可以起到抑制共模和差模干扰的作用。
从滤除电磁干扰的角度,EMI滤波器实质是一个低通滤波器,对直流至截止频率(工频)的信号以最小衰减通过,而对电磁干扰的频带给以尽可能高的衰减,通带与阻带之间的过渡带应尽量地陡。
由图8推导分别得到共模、差模的插入损耗为
按前文的分析,理想EMI滤波器应使共模插入损耗(ILCM)最大,而差模插入损耗(ILDM)最小,从图6可以看出,EMI滤波器在10MHz时噪声超出标准最大,达到35dB左右,所以,共模噪声的衰减必须达到40dB,设计时令Rs/RL=50&O/50&O,衰减损耗按60dB设计,则有
而且根据开关电源产生共模、差模干扰的特点,将整个频率范围划分为3个部分,即
0.15~0.5MHz 差模干扰为主;
0.5~5MHz 差、共模干扰共存;
5~30MHz 共模干扰为主。
对照图6,发现原电路差模、共模干扰全面超标,但可以看出5~30MHz,频率范围内,出现两个尖峰,应由共模干扰引起,所以,在优化设计EMC时必须加强共模的抑制,即可增加CY的容量来实现。
考虑以上各点因素,取Cx=0.47&F,CY=0.22&F,L=22mH,加入EMI滤波器后电路经过传导测试符合EN55022标准,如图6中下方一条曲线所示。
2.2 变压器原边关断尖峰电压抑制
单片开关电源内部集成的MOSFET的高速开断,使得高频变压器原边漏感中储存的能量释放,在变压器原边叠加一个电压尖峰,使高频方波波形畸变,甚至由于尖峰电压全部加在TOPSwitch的D端(漏极)上,可能使芯片损坏。为抑制尖峰电压,在变压器原边绕组并联由瞬态电压抑制器(TVS)和超快恢复二极管(SRD)相串联组成的吸收电路。当MOSFET关断时,TVS反向击穿,SRD导通,漏感中的能量沿并联回路释放,使得MOS-FET两端的电压限定在TVS的击穿电压之内。结合图5的波形可以看出,在开关管关断瞬间,关断尖峰电压叠加在TOPswitch的D端上,使VD达到600V左右(直流高压450V加上TVS的击穿电压200V),TVS钳位电路导通,漏感能量沿并联通路释放,而且由于杂散电容和初级电感形成了谐振电路,产生衰减振荡,之后,VD回落并稳定在直流高压水平上。
2.3 输出二极管关断尖峰电压抑制
反激变换电路+5V主输出电路整流二极管选用SRl640超快恢复二极管(共阴对管),其反向恢复时间trr=35ns,平均整流电流Id=10A,反向峰值电压VRM=200V。电路工作频率在100kHz(周期10&s),选用超快恢复二极管可有效降低由于反向恢复电流而形成的关断电压尖峰。
另外,并联RC电路吸收高频纹波,100&O的电阻同时作为假负载避免空载时输出电压升高。同时电路增加了一阶滤波器,其传递函数为在转折频率后以-40dB衰减高频谐波分量,如图9所示。
由于实际应用中一阶LC滤波会在截止频率附近产生振荡,所以,要合理选取L及C的参数,使其截止频率fc小于输出纹波的最低次谐波分量频率。
如果输出电压纹波达不到要求,可以在输出侧加一级共扼扼流圈以抑制共模干扰传导至输出端。
2.4 其他改进措施
1)采用变压器屏蔽技术,尽量减少其漏感引起的对外辐射噪声;
2)开关管两端并接RC网络,减缓漏源电压的上升斜率,以减小dv/dt对控制端的影响;
3)对PCB工艺进行改进,使其主电路与控制电路分开,对电磁辐射源和电磁敏感器件要注意隔离,以及合理的接地。
3 实验结果
经过以上EMC优化设计,基于TOP224Y设计的的反激变换电路实现输出电压调整率△Vo/Vo=0.1/5=2%(主输出+5V,满载20W,连续72h带载),达到了预期设计的要求。图10是输出电压直流分量与其交流分量波形。
由于电磁兼容已经成为开关电源产业必须考虑的问题,所以,考虑EMC问题要有一定的设计理论依据。本文就噪声干扰产生的不同途径,给出抑制差模、共模干扰的滤波器模型,并结合原电路传导EMI测试曲线存在的问题推算出电路的参数,改进后的电路再次进行传导EMI测试,证实了插入滤波器的有效性。
在此基础上,本文还提出了一些改进噪声干扰的措施,对输出电压的纹波幅值和开关漏源电压峰值起到一定的限制作用。
10.开关电源共模电磁干扰(EMI)对策讲解|开关电源的共模干扰抑制技术学习
&由于MOSFET及IGBT和软开关技术在电力电子电路中的广泛应用,使得功率变换器的开关频率越来越高,结构更加紧凑,但亦带来许多问题,如寄生元件产生的影响加剧,电磁辐射加剧等,所以EMI问题是目前电力电子界关注的主要问题之一。
&&&&&& 传导是电力电子装置中干扰传播的重要途径。差模干扰和共模干扰是主要的传导干扰形态。多数情况下,功率变换器的传导干扰以共模干扰为主。本文介绍了一种基于补偿原理的无源共模干扰抑制技术,并成功地应用于多种功率变换器拓扑中。理论和实验结果都证明了,它能有效地减小电路中的高频传导共模干扰。这一方案的优越性在于,它无需额外的控制电路和辅助电源,不依赖于电源变换器其他部分的运行情况,结构简单、紧凑。
&&&&&& 1&&&n
&&&&&& 共模噪声与差模噪声产生的内部机制有所不同:差模噪声主要由开关变换器的脉动电流引起;共模噪声则主要由较高的d/d与杂散参数间相互作用而产生的高频振荡引起。如图1所示。共模电流包含连线到接地面的位移电流,同时,由于开关器件端子上的d/d是最大的,所以开关器件与散热片之间的杂散电容也将产生共模电流。图2给出了这种新型共模噪声抑制电路所依据的本质概念。开关器件的d/d通过外壳和散热片之间的寄生电容对地形成噪声电流。抑制电路通过检测器件的d/d,并把它反相,然后加到一个补偿电容上面,从而形成补偿电流对噪声电流的抵消。即补偿电流与噪声电流等幅但相位相差180&,并且也流入接地层。根据基尔霍夫电流定律,这两股电流在接地点汇流为零,于是50&O的阻抗平衡网络(LISN)电阻(接测量接收机的BNC端口)上的共模噪声电压被大大减弱了。
图1&&& CM及DM噪声电流的耦合路径示意图
图2&&& 提出的共模噪声消除方法
&&&&&& 2&&& 基于补偿原理的共模干扰抑制技术在开关电源中的应用
&&&&&& 本文以单端反激电路为例,介绍基于补偿原理的共模干扰抑制技术在功率变换器中的应用。图3给出了典型单端反激变换器的拓扑结构,并加入了新的共模噪声抑制电路。如图3所示,从开关器件过来的d/d所导致的寄生电流para注入接地层,附加抑制电路产生的反相噪声补偿电流comp也同时注入接地层。理想的状况就是这两股电流相加为零,从而大大减少了流向LISN电阻的共模电流。利用现有电路中的电源变压器磁芯,在原绕组结构上再增加一个附加绕组NC。由于该绕组只需流过由补偿电容comp产生的反向噪声电流,所以它的线径相对原副方的P及S绕组显得很小(由实际装置的设计考虑决定)。附加电路中的补偿电容comp主要是用来产生和由寄生电容para引起的寄生噪声电流反相的补偿电流。comp的大小由para和绕组匝比P∶C决定。如果P∶C=1,则comp的电容值取得和para相当;若P∶C&1,则comp的取值要满足comp=para&d/d。
图3&&& 带无源共模抑制电路的隔离型反激变换器
&&&&&& 此外,还可以通过改造诸如Buck,Half-bridge等DC/DC变换器中的电感或变压器,从而形成无源补偿电路,实现噪声的抑制,如图4,图5所示。
图4&&& 带有无源共模抑制电路的半桥隔离式DC/DC变换器
图5&&& 带有无源共模抑制电路的Buck变换器
3&&& 实验及结果
&&&&&& 实验采用了一台5kW/50Hz艇用逆变器的单端反激辅助电源作为实验平台。交流调压器的输出经过LISN送入整流桥,整流后的直流输出作为反激电路的输入。多点测得开关管集电极对实验地(机壳)的寄生电容大约为80pF,鉴于实验室现有的电容元件,取用了一个100pF,耐压1kV的瓷片电容作为补偿电容。一接地铝板作为实验桌面,LISN及待测反激电源的外壳均良好接地。图6是补偿绕组电压和原方绕组电压波形。补偿绕组精确的反相重现了原方绕组的波形。图7是流过补偿电容的电流和开关管散热器对地寄生电流的波形。从图7可以看出,补偿电流和寄生电流波形相位相差180&,在一些波形尖刺方面也较好地吻合。但是,由于开关管的金属外壳为集电极且与散热器相通,散热器形状的不规则导致了开关管寄生电容测量的不确定性。由图7可见,补偿电流的幅值大于实际寄生电流,说明补偿电容的取值与寄生电容的逼近程度不够好,取值略偏大。图8给出了补偿电路加入前后,流入LISN接地线的共模电流波形比较。经过共模抑制电路的电流平衡后,共模电流的尖峰得到了很好的抑制,实验数据表明,最大的抑制量大约有14mA左右。
图6&&& 补偿绕组电压和原方绕组电压波形
图7&&& 补偿电容电流和对地寄生电流波形
图8&&& 补偿前后流入LISN地的
共模电流波形(电流卡钳系数:100mV/A)
&&&&&& 图9是用Agilent E4402B频谱分析仪测得的共模电流的频谱波形。可见100kHz到2MHz的频率范围内的CM噪声得到了较好的抑制。但是,在3MHz左右出现了一个幅值突起,之后的高频段也未见明显的衰减,这说明在高频条件下,电路的分布参数成了噪声耦合主要的影响因素,补偿电路带来的高频振荡也部分增加了共模EMI噪声的高频成份。但从滤波器设计的角度来看,这并不太多影响由于降低了低次谐波噪声而节省的设备开支。若是能较精确地调节补偿电容,使其尽可能接近寄生电容Cpara的值,那么抑制的效果会在此基础上有所改善。
图9&&& 补偿前后流入LISN地的CM电流频谱比较
&&&&&& 4&&& 此技术的局限性
&&&&&& 图10中的(a),(b),(c),(d)给出了噪声抑制电路无法起到正常效用时的电压、电流的波形仿真情况。这里主要包含了两种情况:
&&&&&& 第一种情况是在输入电容的等效串联电感()上遇到的。电感在整个电路中充当了限制电流变化率d/d的角色,很显然LISN中大电感量的串联电感限制了变换器电源作为电流源提供的能力。因此,这些脉动电流所需的能量必须靠输入电容来供给,但是输入电容自身的也限制了它们作为电流源的能力。愈大,则输入端电容提供给补偿变压器所需高频电流的能力愈受限制。当为100nH时,补偿电路几乎失效。图10(a)中虽说补偿电压与寄生CM电压波形非常近似,但是图10(b)中却很明显看出流过补偿电容comp的电流被限制了。
&&&&&& 另外一种严重的情况是补偿变压器的漏感。当把变压器漏感从原来磁化电感的0.1%增大到10%的时候,补偿电路也开始失效,如图10(c)及图10(d)所示。补偿绕组电压波形由于漏感和磁化电感的缘故发生分叉。如果漏感相对于磁化电感来说很小的话,这个波形畸变可以忽略,但实际补偿电容上呈现的d/d波形已经恶化,以至于补偿电路无法有效发挥抑制作用。
(a)&&& 输入电容值较大时的CM电压
(b)&&& 输入电容值较大时的CM电流
(c)&&& 漏感值较大时的CM电压
(d)&&& 漏感值较大时的CM电流
图10&&& 噪声电路失效仿真电压、电流波形
&&&&&& 为了解决和变压器漏感这两个严重的限制因素,可以采取以下措施:对于输入电容的,要尽量降低至可以接受的程度,通过并联低值的电容来改善;密绕原方绕组和补偿绕组可以有效降低漏感。
&&&&&& 5&&& 结语
&&&&&& 由以上的实验和分析可以看到,应用到传统电源变换器拓扑结构中的这种无源CM噪声抑制电路是有一定作用的。由于用来补偿的附加绕组只须加到现有的变压器结构中,所以,隔离式的拓扑结构对于采用这种无源补偿消除电路来说可能是最简易、经济的电路结构。
11.开关电源的电磁干扰(EMI)解决措施的研究报告
随着电力电子技术的快速发展,开关电源正日益得到广泛应用。但是随着开关电源的高频化和大容量化,其在换流过程中产生了严重的电磁干扰,这些干扰严重污染了周围电磁环境和电源系统,从而制约了功率转换的应用。方献分析结果表明,开关调制信号的特性影响降低电磁干扰水平的效果。相应地,不同的混沌信号也会对降低电磁干扰水平的效果产生影响。本文以一个能产生混沌、亚超混沌与超混沌信号的电路[3]为信号源,以Boost型DC/DC变换器为对象,研究不同混沌调制信号对降低开关电源电磁干扰水平效果的影响,为生成混沌开关调制信号的混沌信号源优化选择提供参考依据。
  超混沌电路及其混沌调制信号
  &超混沌电路&由5个线性元件和一个非线性电容元件组成。其电路如图1(a)所示。图1(b)为非线性电容元件的库伏特性。
  对图1(a)中电路,取非线性电容C1极板上的电荷q1、流过电感L1中的电流il1、线性电容C2两端的电压uC2以及流过电感L2的电流iL2作为状态变量,并对其进行归一化处理后有
点击看原图
  当电路归一化参数取b=0.5369、c=0.3725、d=0.0354、e=0.5890、f=0.8489,a作为分岔参数改变。当分岔参数a&(0.05,0.15)时,电路先后输出超混沌、亚超混沌及混沌信号。本文选取该参数范围内3种性质的混沌信号作为信号源,按照文献中生成混沌开关调制信号的原理,获得混沌开关调制信号。
  典型超混沌信号及相图如图2(a)、(b)所示,此时超混沌信号对应的李雅普诺夫指数为:&1=0.042&2=0.008,&3=0.000,&4=-0.067。用于计算机模拟中除图中给出的超混沌信号外,对应的混沌和亚超混沌信号的李雅普诺夫指数分别为:&1=0.029,&2=0.000,&3=-0.038,&4=-0.097和&1=0.033,&2=0.000,&3=0.000,&4=-0.073。
  根据文献,混沌开关调制信号有表1以标准PWM为参照的4种调制模式。即标准PWM脉的参数由混沌序列调制的&混沌脉冲宽度调制&(CPWM)、&混沌脉冲位置调制&(CPPM)、&定占空比混沌载频调制&(CCFMFD)以及&变占空比混沌载频调制&(CCFMVD)。各种调制模式的具体调制过程为:对CPWM模式,开关导通时间由Ton=T/2+(x(n)-x)T/k决定,k=2;对CPPM模式,开关延迟时间位于[0,0.5T];对CCFMVD模式,与CPWM一样,使开关导通时间Ton=T/2+(x(n)-x)T/k随混沌序列变化,开关断开时间为0.5T,由于导通时间变化,断开时间固定,周期变化,占空比不定;对CCFMFD模式,每一个开关周期T(n)=T+(x(n)-x)T/k都是变化的,开关的占空比固定。两种混沌载频调制模式下k=2,占空比或平均占空比均为0.5。
  混沌信号调制下Boost型变换器电磁干扰水平分析
  Boost型变换器电路如图3所示。用于计算机模拟的电路中,取电源电压Vin=10V、电感L=1mH、电容C=12&F。按前述方式生成的各种混沌开关调制信号的平均频率为10kHz,平均占空比取为0.5。为对比,文中所给出的结果均以占空比等于0.5的标准PWM为比较对象。为保证结果的可靠性,模拟中使用的软件已应用标准电路结果进行了校验。
  大量的计算机模拟表明,不论是使用混沌还是超混沌信号生成混沌开关调制信号,都可以降低Boost型变换器输入电流的谐波谱峰值,但不同的混沌调制模式有不同的频谱扩展结果。在相同输出电压条件下,以标准PWM模式为参考,将4种混沌调制模式进行横向比较可以得到:谐波峰值平均降低量以CCFMFD模式为最大,CCFMVD模式次之,CPWM模式效果最差。这与文献使用&蔡氏电路&双涡卷混沌序列调制模式下对Buck型变换器进行计算机模拟所得结果一致。就同一种开关调制模式而言,不同性质混沌对CCFMFD模式的影响如表2所示。即在电路参数、输出直流电压、调制模式都相同的情况下,仅仅改变调制信号的性质得到的结果。
  从表中给出的以标准周期PWM前19次谐波为参照的数据可以看出,分别在混沌、亚超混沌及超混沌信号调制下,各次谐
波对应处的频谱数值都得到了明显的降低。在混沌信号调制下,谐波对应处的频谱数值平均降低14.87分贝(dB);在亚超混沌信号调制下,谐波对应处的频谱数值平均降低16.84分贝(dB);在超混沌信号调制下,谐波对应处的频谱数值平均降低17.86分贝(dB)。若以欧盟(89/336/EEC指令)电磁兼容性导则中限制设备输入电流谐波分量最大值幅度这一原则,来讨论不同性质混沌信号降低电磁干扰水平的效果,结论非常明显,即以超混沌信号作为开关调制信号源,比混沌能更好地降低电磁干扰水平。
  本文对不同性质混沌序列调制的开关信号降低开关模式电源电磁干扰水平的效果进行了多方位的比较分析,结果表明:不管是何种性质的混沌调制信号,都能降低Boost型变换器的电磁干扰水平;不同性质的混沌序列,有不同的降低电磁干扰水平的效果。
12.电磁兼容-EMC-仿真技术-开关电源共模传导干扰模型与滤波技术.pdf---详见电源资料文件夹中!
13.开关-电源输入端口的电磁兼容性设计(电磁兼容-EMC设计)
开关电源一般都采用脉冲宽度调制(PWM)技术,其特点是频率高,效率高,功率密度高,可靠性高。然而,由于其开关器件工作在高频通断状态,高频的快速瞬变过程本身就是一电磁骚扰(EMD)源,它产生的EMI信号有很宽的频率范围,又有一定的幅度。若把这种电源直接用于数字设备,则设备产生的EMI信号会变得更加强烈和复杂。
  本文从开关电源的工作原理出发,探讨抑制传导干扰的EMI滤波器的设计以及对辐射EMI的抑制。
  1开关电源产生EMI的机理
  数字设备中的逻辑关系是用脉冲信号来表示的。为便于分析,把这种脉冲信号适当简化,用图1所示的脉冲串表示。根据傅里叶级数展开的方法,可用式(1)计算出信号所有各次谐波的电平。
  式中:An为脉冲中第n次谐波的电平;
  Vo为脉冲的电平;
  T为脉冲串的周期;
  tw为脉冲宽度;
  tr为脉冲的上升时间和下降时间。
  开关电源具有各式各样的电路形式,但它们的核心部分都是一个高电压、大电流的受控脉冲信号源。假定某PWM开关电源脉冲信号的主要参数为:Vo=500V,T=2&10-5s,tw=10-5s,tr=0.4&10-6s,则其谐波电平如图2所示。
  图2中开关电源内脉冲信号产生的谐波电平,对于其他电子设备来说即是EMI信号,这些谐波电平可以从对电源线的传导干扰(频率范围为0.15~30MHz)和电场辐射干扰(频率范围为30~1000MHz)的测量中反映出来。
  在图2中,基波电平约160dB&V,500MHz约30dB&V,所以,要把开关电源的EMI电平都控制在标准规定的限值内,是有一定难度的。
  2开关电源EMI滤波器的电路设计
  当开关电源的谐波电平在低频段(频率范围0.15~30MHz)表现在电源线上时,称之为传导干扰。要抑制传导干扰相对比较容易,只要使用适当的EMI滤波器,就能将其在电源线上的EMI信号电平抑制在相关标准规定的限值内。
要使EMI滤波器对EMI信号有最佳的衰减性能,则滤波器阻抗应与电源阻抗失配,失配越厉害,实现的衰减越理想,得到的插入损耗特性就越好。也就是说,如果噪音源内阻是低阻抗的,则与之对接的EMI滤波器的输入阻抗应该是高阻抗(如电感量很大的串联电感);如果噪音源内阻是高阻抗的,则EMI滤波器的输入阻抗应该是低阻抗(如容量很大的并联电容)。这个原则也是设计抑制开关电源EMI滤波器必须遵循的。
  几乎所有设备的传导干扰都包含共模噪音和差模噪音,开关电源也不例外。共模干扰是由于载流导体与大地之间的电位差产生的,其特点是两条线上的杂讯电压是同电位同向的;而差模干扰则是由于载流导体之间的电位差产生的,其特点是两条线上的杂讯电压是同电位反向的。通常,线路上干扰电压的这两种分量是同时存在的。由于线路阻抗的不平衡,两种分量在传输中会互相转变,情况十分复杂。典型的包含了共模杂讯和差模杂讯两部分的抑制电路,如图3所示。
  设计时,必须使和差模滤波电路的谐振频率明显低于开关电源的工作频率,一般要低于10kHz,即&
  在实际使用中,由于设备所产生的共模和差模的成分不一样,可适当增加或减少滤波元件。具体电路的调整一般要经过后才能有满意的结果,安装滤波电路时一定要保证接地良好,并且输入端和输出端要良好隔离,否则,起不到滤波的效果。
  开关电源所产生的干扰以共模干扰为主,在设计滤波电路时可尝试去掉差模电感,再增加一级共模滤波电感。常采用如图4所示的滤波电路,可使开关电源的传导干扰下降了近30dB,比CISOR22标准的限值低了近6dB以上。
  还有一个设计原则是不要过于追求滤波效果而造成成本过高,只要达到EMC标准的限值要求并有一定的余量(一般可控制在6dB左右)即可。
  如前所述,开关电源是一个很强的骚扰源,它来源于开关器件的高频通断和输出整流二极管反向恢复。很强的电磁骚扰信号通过空间辐射和电源线的传导而干扰邻近的敏感设备。除了功率开关管和高频整流二极管外,产生辐射干扰的主要元器件还有脉冲变压器及滤波电感等。
  虽然,功率开关管的快速通断给开关电源带来了更高的效益,但是,也带来了更强的高频辐射。要降低辐射干扰,可应用电压缓冲电路,如在开关管两端并联RCD缓冲电路,或电流缓冲电路,如在开关管的集电极上串联20~80&H的电感。电感在功率开关管导通时能避免集电极电流突然增大,同时也可以减少整流电路中冲击电流的影响。
  功率开关管的集电极是一个强干扰源,开关管的散热片应接到开关管的发射极上,以确保集电极与散热片之间由于分布电容而产生的电流流入主电路中。为减少散热片和机壳的分布电容,散热片应尽量远离机壳,如有条件的话,可采用有屏蔽措施的开关管散热片。整流二极管应采用恢复电荷小,且反向恢复时间短的,如肖特基管,最好是选用反向恢复呈软特性的。另外在肖特基管两端套磁珠和并联RC吸收网络均可减少干扰,电阻、电容的取值可为几&O和数千pF,电容引线应尽可能短,以减少引线电感。实际使用中一般采用具有软恢复特性的整流二极管,并在二极管两端并接小电容来消除电路的寄生振荡。
  负载电流越大,续流结束时流经整流二极管的电流也越大,二极管反向恢复的时间也越长,则尖峰电流的影响也越大。采用多个整流二极管并联来分担负载电流,可以降低短路尖峰电流的影响。
  开关电源必须屏蔽,采用模块式全密封结构,建议用1mm以上厚度的镀锌钢板,屏蔽层必须良好接地。在高频脉冲变压器初、次级之间加一屏蔽层并接地,可以抑制干扰的电场耦合。将高频脉冲变压器、输出滤波电感等磁性元件加上屏蔽罩,可以将磁力线限制在磁阻小的屏蔽体内。
  根据以上设计思路,对辐射干扰超过标准限值20dB左右的某开关电源,采用了一些在实验室容易实现的措施,进行了如下的改进: &&在所有整流二极管两端并470pF电容;
  &&在开关管G极的输入端并50pF电容,与原有的39&O电阻形成一RC低通滤波器;
  &&在各输出滤波电容(电解电容)上并一0.01&F电容;
  &&在整流二极管管脚上套一小磁珠;
  &&改善屏蔽体的接地。
  经过上述改进后,该电源就可以通过辐射干扰测试的限值要求。
  随着电子产品的电磁兼容性日益受到重视,抑制开关电源的EMI,提高电子产品的质量,使之符合有关标准或规范,已成为电子产品设计者越来越关注的问题。本文是在分析干扰产生机理、以及大量实践的基础上,提出了行之有效的抑制措施。
14.开关电源电磁干扰(EMI)的产生原因及其抑制措施
随着微电子技术的迅速发展,设备的小型化和数字化成为技术的发展主流,导致开关电源的应用日趋广泛。但开关电源固有的高频辐射及传导的电磁干扰发射对开关电源效率及使用的影响已成为人们关注的热点。通过对开关电源电磁干扰机理的详细分析,提出了相应的抑制措施及需要注意的问题。
 开关电源与线性电源相比,具有功耗小、效率高、体积小、重量轻、稳压范围宽等特点,广泛应用于计算机及外围设备、通讯、自动控制、家用电器等领域。但开关电源的突出缺点是产生较强的电磁干扰( EMI )。 EMI 信号即具有很宽的频率范围,又有一定的幅度,经传导和辐射会污染电磁环境,对通讯设备和电子产品造成干扰。 ?
1 电磁干扰
 讨论电磁干扰一般是从干扰源的特性、干扰的耦合通道特性和受扰体的特性 3 个方面来进行的[ 1 ]。
1 . 1 开关电源的主要电磁干扰源
 开关电源中的电磁干扰源主要有开关器件、二极管和非线性无源元件。在开关电源中,印制板布线不当也是引起电磁干扰的一个主要因数。
1 . 1 . 1开关电路产生的电磁干扰
 对开关电源来说,开关电路产生的电磁干扰是其主要干扰源之一。开关电路是开关电源的核心,主要由开关管和高频变压器组成。他产生的 dv/dt 具有较大的脉冲,频带较宽且谐波丰富。这种脉冲干扰产生的主要原因是:
  (1) 开关管负载为高频变压器初级线圈,是感性负载。在开关导通瞬间,初级线圈产生很大的涌流,并在初级线圈的两端出现较高的浪涌尖峰电压;在开关管断开瞬间,由于初级线圈的漏磁通,致使一部分能量没有从一次线圈传输到二次线圈,储藏在电感中的这部分能量将和集电极电路中的电容、电阻形成带有尖峰的衰减振荡,叠加在关断电压上,形成关断尖峰电压。这种电源电压中断会产生与初级线圈接通时一样的磁化冲击电流瞬变,这个噪声会传导到输入输出端,形成传导干扰,重者有可能击穿开关管。
  (2) 脉冲变压器初级线圈,开关管和滤波电容构成的高频开关电流环路可能产生较大的空间辐射,形成辐射干扰,如果电容滤波容量不足或高频特性不好,电容上的高频阻抗会使高频电流以差模方式传导到交流电源中形成传导干扰。
1 . 1 . 2二极管整流电路产生的电磁干扰
 主电路中整流二极管产生的反向恢复电流的 |di/dt| 远比续流二极管恢复电流 |di/dt| 小得多。作为电磁干扰源来研究,整流二极管反向恢复电流形成的干扰强度大,频带宽。整流二极管产生的电压跳变远小于电源中的功率开关管导通和关断时产生的电压跳变。因此,不计整流二极管产生的 |dv/dt| 和 |di/dt| 的影响,而把整流电路当成电磁干扰耦合通道的一部分来研究也是可以的。
1 . 2 开关电源电磁干扰的耦合通道
 开关电源通过耦合通道对自身产生干扰。通常多采用差模和共模干扰加以分析。
  & 共模干扰 & 是指干扰大小和方向一致,其存在于电源任何一相对大地、或中线对大地间。共模干扰也称纵模干扰、不对称干扰或接地干扰,是载流体与大地之间的干扰。
  & 差模干扰 & 是指干扰大小相等,方向相反,其存在于电源相线与中线之间。差模干扰也称常模干扰、横模干扰或对称干扰。这是载流体之间的干扰。
 &&& 共模干扰说明了干扰是由辐射或串扰耦合到电路中的。而差模干扰则说明了干扰是源于同一条电路的。通常这两种干扰是同时存在的,由于线路阻抗的不平衡,两种干扰在传输中还会互相转化,所以情况非常复杂。 ?
2 电磁干扰的抑制
 && 对开关电源 EMI 的抑制措施主要采用正确的接地、屏蔽、滤波措施;设计合理的印制板布线。
2 . 1 接地
  & 接地 & 有设备内部的信号地和设备接大地,两者概念不同,目的也不同。
2 . 1 . 1设备接大地
& 电子电气设备有许多需要接地的部位,由于电路的性质和接地的目的不同必须加以严格的区分,需要分成若干独立的子系统,然后连接在一起进行总接地。设备接大地的目的主要有 ? [ 2 ]:
   (1) 设备的安全接地,对设备操作人员实现安全保护。 ?
   (2) 泄放机箱上所积聚的电荷,避免因电荷积聚使机箱电位升高,造成电路工作不稳定。
   (3) 避免设备在外界电磁环境的作用下使设备对大地的电位发生变化,造成设备工作的不稳定。
  由此可见,接地也是抑制干扰的重要手段,在实际应用中,将接地与屏蔽、滤波等技术配合使用,对抑制干扰起到事半功倍的作用。
2 . 1 . 2 设备信号地
  设备的信号接地,可能是以设备中的某一点或一块金属薄板作为信号接地的接地参考点,他为设备中的所有信号提供一个公共参考电位。实用中接地方式有:浮地、单点接地、多点接地。主要介绍浮地和混合接地
   (1) 浮地
  采用浮地的目的是使电路的某一部分与 & 大地线 & 完全隔离,从而抑制来自接地线的干扰。由于没有电器上的联系,因而也就不能形成地环路电流而产生地阻抗的耦合干扰。实现电路或设备浮地的方法有电磁隔离和光电隔离。浮地的最大优点是抗干扰性能好。
  电磁隔离采用变压器实现。通过变压器传递电信号,阻止电路耦合产生的电磁干扰。光电隔离采用光耦合器实现。通过半导体发光二极管和光敏半导体(光敏电阻、光敏二极管、光敏三极管等)的光接收,来实现信号的传递浮地的缺点是由于设备不与公共地相连,容易在两者之间产生静电积累,当电荷积累到一定程度后,在设备地与公共地之间的电位差可能引起剧烈的静电放电,而成为破坏性很强的干扰源。一个折衷的方法是在浮地与公共地之间跨接一个阻值很大的泄放电阻,用以释放所积累的电荷。注意控制泄放电阻的阻值,太低的电阻值会影响设备泄漏电流的合格性。
   (2) 混合接地
  混合接地即包含了单点接地的特性,又包含了多点接地的特性。
)学习更多电磁兼容(EMC)知识,到(
)交流电磁兼容(EMC)设计学习经验,下载电磁兼容标准和电磁兼容资料。&
  接地原则为:
  所有的电源地线都接到电源总地线上,所有的屏蔽地线都要接到屏蔽总地线上,所有的信号地线都要接到信号总地线上, 3 根总地线最后汇总到公共的参考地。
2 . 2 屏蔽
  屏蔽能切断干扰源和被干扰对象之间的磁力线,以免除电感性耦合、电容性耦合等的电磁干扰。
  任何两个导体之间都存在着电容。电容值与介质的介电常数 & 和两个导体的有效面积成正比,与两个导体之间的距离 D 成反比。当两个平行圆导体直径为 d 时,其电容 C 为[ 3 ]:
  当一个导体对地具有电位 U1 ,阻抗 Z1 ,另一个导体对地具有阻抗 Z2 ,两个导体具有相同的电位,通过两个导体之间的电容,在另一个导体上将产生干扰电压 U2 为[ 3 ]:
相关文章13-05-22 10:23?&|&
13-02-01 13:08?&|&
13-01-23 15:14?&|&
13-01-16 16:13?&|&
12-12-28 16:21?&|&
12-10-15 09:30?&|&
12-09-27 11:21?&|&
12-09-27 11:17?&|&
(责任编辑:keep-moving)
IPC大中华区总裁Philip S. C
Copyright (C)
PCBTech.Net, All Rights Reserved 版权所有
商务联系、网站内容、合作建议:021-
未经版权所有人明确的书面许可,不得以任何方式或媒体翻印或转载本网站的部分或全部内容。}

我要回帖

更多关于 滤波器 的文章

更多推荐

版权声明:文章内容来源于网络,版权归原作者所有,如有侵权请点击这里与我们联系,我们将及时删除。

点击添加站长微信