有多少种方法y=函数y sinx x的导数为变换到y=A(ωx+φ)有多少种方法

关于三角函数y=Asin(ωx+φ)的问题y=Asin(ωx+φ)中的A ω φ 怎么求呢?比如给了你一个图 有最高点 最低点等等 我对这方面很模糊.最好有好点的课件就是比如说 y=sin(2x+π/2)的图象 换成 y=sinx图象时 先移动哪个时 是先变成 y=2sin(x+π/4)?
你可以这样理解,A可以控制这个函数的值域,也就是最高点和最低点,你应该知道,sinX的值域为一到负一,所以A可以通过最高点最低点求.ω 是控制函数的周期,比方说ω =2,那函数的周期就是1π,周期T=2π除以ω .所以可以通过图中的周期求.φ 是可以控制函数向左或者向右平移,左加右减的规则,就是这样了
为您推荐:
其他类似问题
扫描下载二维码2016高考数学:函数y=Asin(ωx+φ)的图象_新东方网
您好,欢迎来到新东方
& 文章正文
11:18&&作者:&&来源:学科网&&字号:|
2016高考各科复习资料
  2016年高三开学已经有一段时间了,高三的同学们是不是已经投入了紧张的高考一轮复习中,新东方网高考频道从高三开学季开始为大家系列准备了2016年高考复习,2016年高考一轮复习,2016年高考二轮复习,2016年高考三轮复习都将持续系统的为大家推出。&&
  考纲解读
  1.了解函数y=Asin(ωx+φ)的物理意义,能画出y=Asin(ωx+φ)的图像,了解参数A、ω、φ对函数图像变化的影响.
  2.了解三角函数是描述周期变化现象的重要函数模型,会用三角函数解决一些简单实际问题.
  考向预测
  1.“五点法”作图的有关知识是高考的热点.
  2.图像的变换规律:平移和伸缩变换常在客观题中考查.
  3.结合三角恒等变形,考查y=Asin(ωx+φ)的性质及简单应用是解答题中三角函数考查的热点.
  知识梳理
  1.y=Asin(ωx+φ)的有关概念
  y=Asin(ωx+φ)
  (A&0,ω&0),
  x[0,+∞) 振幅 周期 频率 相位 初相 A T=f==ωx+φ φ
  2.用五点法画y=Asin(ωx+φ)一个周期内的简图
  用五点法画y=Asin(ωx+φ)一个周期内的简图时,要找五个关键点,如下表所示.
  有质量
  x ωx+φ 0 π 2π y=Asin(ωx+φ) 0 A 0 -A 0
  3.函数y=sinx的图像变换得到y=Asin(ωx+φ)(A&0,ω&0)的图像的步骤
  4.三角函数模型的应用
  (1)根据图像建立解析式或根据解析式作出图像.
  (2)将实际问题抽象为与三角函数有关的简单函数模型.
  (3)利用收集到的数据作出散点图,并根据散点图进行函数拟合,从而得到函数模型.
  1.(2012·安徽文,7)要得到函数y=cos(2x+1)的图像,只要将函数y=cos2x的图像(  )
  A.向左平移1个单位   B.向右平移1个单位
  C.向左平移个单位 D.向右平移个单位
  [解析] 本题考查三角函数(余弦型函数)图像的平移问题.
  y=cos(2x+1)=cos2(x+),所以只须将y=cos2x图像向左平移个单位即可得到y=cos(2x+1)的图像.注意图像平移是对“x”而言的.
  2.已知函数y=2sin(ωx+φ)(ω&0)在区间[0,2π]的图像如下:
  那么ω=(  )
  A.1     B.2
  [答案] B
  [解析] 由图像可知,函数周期T=π,ω==2.
  3.把y=sinx的图像上点的横坐标变为原来的2倍得到y=sinωx的图像,则ω的值为(  )
  A.1 B.4
  C. D.2
  [解析] y=sinxy=sin(x)=sinx,ω=.
  4.(文)将函数y=sin2x的图像向左平移个单位,再向上平移1个单位,所得图像的函数解析式是(  )
  A.y=cos2x     B.y=2cos2x
  C.y=1+sin D.y=2sin2x
  [解析] 本小题主要考查了三角函数图像的平移,同时考查了学生应用诱导公式化简三角函数式的能力.
  (理)设函数f(x)=cosωx(ω&0),将y=f(x)的图像向右平移个单位长度后,所得的图像与原图像重合,则ω的最小值等于(  )
  A. B.3
  C.6 D.9
  [解析] 由题意可知,nT=(nN*),
  n·=(nN*),ω=6n(nN*),
  当n=1时,ω取得最小值6.
  5.已知函数f(x)=Acos(ωx+φ)的图像如图所示,f=-,则f(0)=________.
  [答案]
  [解析] 由图可知,=,T=,ω=3,故f(x)=Acos(3x+φ).f=-,Acos=-,Asinφ=-.又f=0,Acos=0,
  sinφ=-cosφ,f(0)=Acosφ=-Asinφ=.
  6.(2012·四川成都一模)已知函数f(x)=sin(x+)(x&0)的图像与x轴的交点从左到右依次为(x1,0),(x2,0),(x3,0),…,则数列{xn}的前4项和为________.
  [答案] 26
  [解析] 令f(x)=sin(x+)=0,则x+=kπ,
  x=3k-1(kN*),
  x1+x2+x3+x4=3(1+2+3+4)-4=26.
  7.(2012·山东理,17)已知向量m=(sinx,1),n=(Acosx,cos2x)(A&0),函数f(x)=m·n的最大值为6.
  (1)求A;
  (2)将函数y=f(x)的图像向左平移个单位,再将所得图像上各点的横坐标缩短为原来的倍,纵坐标不变,得到函数y=g(x)的图像.求g(x)在[0,]上的值域.
  [解析] (1)f(x)=m·n=Asinxcosx+cos2x
  =Asin2x+cos2x=Asin(2x+),
  因为f(x)的最大值为6,所以A=6.
  (2)函数y=f(x)的图像向左平移个单位得到函数y=6sin[2(x+)+]的图像,再将所得图像各点的横坐标缩短为原来的倍,纵坐标不变,得到函数g(x)=6sin(4x+).
  当x[0,]时,4x+[,],
  sin(4x+)[-,1],g(x)[-3,6].
  故函数g(x)在[0,]上的值域为[-3,6].
  [例1] 作出函数y=3sin,xR的简图,说明它与y=sinx图像之间的关系.
  [分析] 利用五点作图法作出函数图像,然后判断图像间的关系.
  函数y=Asin(ωx+φ)的图像[解析] 按“五点法”,令2x+分别取0,,π,π,2π时,x相应取-,,,,,所对应的五点是函数y=3sin,x的图像上起关键作用的点.
  列表:
  x - 2x+ 0 π 2π 3sin 0 3 0 -3 0
  描点画图,如图.
  利用函数的周期性,可以把上述简图向左、右扩展,就得到
  y=3sin,xR的简图.
  从图可以看出,y=3sin的图像,是用下面方法得到的.
  [点评] 解法1是先平移,后伸缩;解法2是先伸缩,后平移.表面上看,两种变换方法中的平移分别是和,是不同的,但由于平移时平移的对象已有变化,所以得到的结果是一致的.
  已知函数y=sin+cos(xR).
  (1)用“五点法”画出它的图像;
  (2)求它的振幅、周期及初相;
  (3)说明该函数的图像可由y=sinx的图像经过怎样的变换而得到?
  [解析] (1)y=2sin(+),令X=+,
  列表如下:
  X 0 π 2π x - y 0 2 0 -2 0
  描点连线得图像如图
  (2)振幅A=2,周期T=4π,初相为.
  (3)将y=sinx图像上各点向左平移个单位,得到y=sin(x+)的图像,再把y=sin(x+)的图像上各点的横坐标伸长到原来的2倍(纵坐标不变)得到y=sin(+)的图像.最后把y=sin(+)的图像上各点的纵坐标伸长到原来的2倍,即得函数y=2sin(+)的图像.
  [点评] 用“五点法”作图应抓住四条:化为y=Asin(ωx+φ)(A&0,ω&0)或y=Acos(ωx+φ)(A&0,ω&0)的形式;求出周期T=;求出振幅A;列出一个周期内的五个特殊点,当画出某指定区间上的图像时,应列出该区间内的特殊点.
  [例2] 已知函数f(x)=Asin(ωx+φ)+b(ω&0,|φ|&)的图像的一部分如图所示:
  (1)求f(x)的表达式;
  (2)试写出f(x)的对称轴方程.
  求三角函数y=Asin(ωx+φ)的解析式[分析] (1)函数的最大值为3,最小值为-1,周期T=π,从而A,b,ω可求,再代入(,3),可求φ值.
  (2)根据y=sinx的对称轴方程得到所求的对称轴方程.
  [解析] (1)由图像可知,函数的最大值M=3,最小值m=-1,
  则A==2,b==1.
  又T=2(π-)=π,ω===2,
  f(x)=2sin(2x+φ)+1.
  将x=,y=3代入上式,得sin(+φ)=1,
  ∴+φ=+2kπ,kZ,
  即φ=+2kπ,kZ,
  又|φ|&,φ=,
  f(x)=2sin(2x+)+1.
  (2)由2x+=+kπ(kZ)得
  x=+kπ,kZ,
  f(x)=2sin(2x+)+1的对称轴方程为:
  x=+kπ,kZ.
  [点评] 在确定φ值时,也可用五点法确定,往往以寻找“五点法”中的第一零点(-,0)作为突破口.具体如下:
  “第一点”(即图像上升时与x轴的交点)为ωx+φ=0;“第二点”(即图像的“峰点”)为ωx+φ=;“第三点”(即图像下降时与x轴的交点)为ωx+φ=π;“第四点”(即图像的“谷点”)为ωx+φ=;“第五点”为ωx+φ=2π.
  (文)已知简谐运动f(x)=2sin(|φ|&)的图像经过点(0,1),则该简谐运动的最小正周期T和初相φ分别为(  )
  A.T=6,φ= B.T=6,φ=
  C.T=6π,φ= D.T=6π,φ=
  [解析] 最小正周期T==6.
  f(x)过点(0,1),1=2sinφ,又|φ|&,φ=.
  (理)函数y=Asin(ωx+φ)(ω&0,|φ|&,xR)的部分图像如图所示,则函数表达式为______________.
  [答案] y=-4sin
  [解析] 由图像可以看出,A=4,=6+2,T=16.
  则ω==.将点(-2,0)代入y=4sin中得sin=0.-+φ=π,φ=,
  y=4sin.又|φ|&.
  ∴函数表达式y=4sin
  =-4sin.
  [点评] 三角函数图像中,图像上与x轴相邻两个交点之间的距离为半个周期,相邻两对称轴之间的距离为半个周期.
  [例3] 已知函数f(x)=sin2xsinφ+cos2xcosφ-sin(0&φ&π),其图像过点.
  (1)求φ的值;
  (2)将函数y=f(x)的图像上各点的横坐标缩短到原来的,纵坐标不变,得到函数y=g(x)的图像,求函数g(x)在[0,]上的最大值和最小值.
  三角函数性质的综合应用[分析] 本题考查三角函数的诱导公式及二倍角等基本公式的灵活应用、图像变换以及三角函数的最值问题、分析问题与解决问题的能力.可直接利用公式化简求值.
  [解析] (1)因为已知函数图像过点,所以有=sinsinφ+cos2cosφ-sin(0&φ&π),即有1=sinφ+cosφ-cosφ(0&φ&π),
  所以sin=1,所以φ+=,解得φ=.
  (2)由(1)知φ=,所以f(x)=sin2xsin+cos2xcos-sin(0&φ&π)
  =sin2x+cos2x-=sin2x+×-
  =sin,
  所以g(x)=sin,因为x,
  所以4x+,
  所以当4x+=时,g(x)取最大值;
  当4x+=时,g(x)取最小值-.
  [点评] 高考对两角和与差的正弦、余弦、正切公式及二倍角公式的考查往往渗透在研究三角函数性质中,需要利用这些公式,先把函数解析式化为y=Asin(ωx+φ)的形式,再进一步讨论其定义域、值域和最值、单调性、奇偶性、周期性、对称性等性质.
  已知函数f(x)=sin2ωx+sinωxsin(ωx+)+2cos2ωx,xR(ω&0),在y轴右侧的第一个最高点的横坐标为.
  (1)求f(x)的对称轴方程;
  (2)求f(x)的单调递增区间.
  [解析] (1)f(x)=sin2ωx+cos2ωx+
  =sin(2ωx+)+.
  令2ωx+=,将x=代入可得:ω=1,
  f(x)=sin(2x+)+,
  对称轴方程为2x+=kπ+(kZ),
  即x=kπ+(kZ).
  (2)由2kπ-≤2x+≤2kπ+(kZ)可得:
  单调增区间为[kπ-,kπ+](kZ).
  考纲解读
  1.了解函数y=Asin(ωx+φ)的物理意义,能画出y=Asin(ωx+φ)的图像,了解参数A、ω、φ对函数图像变化的影响.
  2.了解三角函数是描述周期变化现象的重要函数模型,会用三角函数解决一些简单实际问题.
  考向预测
  1.“五点法”作图的有关知识是高考的热点.
  2.图像的变换规律:平移和伸缩变换常在客观题中考查.
  3.结合三角恒等变形,考查y=Asin(ωx+φ)的性质及简单应用是解答题中三角函数考查的热点.
  知识梳理
  1.y=Asin(ωx+φ)的有关概念
  y=Asin(ωx+φ)
  (A&0,ω&0),
  x[0,+∞) 振幅 周期 频率 相位 初相 A T=f==ωx+φ φ
  2.用五点法画y=Asin(ωx+φ)一个周期内的简图
  用五点法画y=Asin(ωx+φ)一个周期内的简图时,要找五个关键点,如下表所示.
  有质量
  x ωx+φ 0 π 2π y=Asin(ωx+φ) 0 A 0 -A 0
  3.函数y=sinx的图像变换得到y=Asin(ωx+φ)(A&0,ω&0)的图像的步骤
  4.三角函数模型的应用
  (1)根据图像建立解析式或根据解析式作出图像.
  (2)将实际问题抽象为与三角函数有关的简单函数模型.
  (3)利用收集到的数据作出散点图,并根据散点图进行函数拟合,从而得到函数模型.
  1.(2012·安徽文,7)要得到函数y=cos(2x+1)的图像,只要将函数y=cos2x的图像(  )
  A.向左平移1个单位   B.向右平移1个单位
  C.向左平移个单位 D.向右平移个单位
  [解析] 本题考查三角函数(余弦型函数)图像的平移问题.
  y=cos(2x+1)=cos2(x+),所以只须将y=cos2x图像向左平移个单位即可得到y=cos(2x+1)的图像.注意图像平移是对“x”而言的.
  2.已知函数y=2sin(ωx+φ)(ω&0)在区间[0,2π]的图像如下:
  那么ω=(  )
  A.1     B.2
  [答案] B
  [解析] 由图像可知,函数周期T=π,ω==2.
  3.把y=sinx的图像上点的横坐标变为原来的2倍得到y=sinωx的图像,则ω的值为(  )
  A.1 B.4
  C. D.2
  [解析] y=sinxy=sin(x)=sinx,ω=.
  4.(文)将函数y=sin2x的图像向左平移个单位,再向上平移1个单位,所得图像的函数解析式是(  )
  A.y=cos2x     B.y=2cos2x
  C.y=1+sin D.y=2sin2x
  [解析] 本小题主要考查了三角函数图像的平移,同时考查了学生应用诱导公式化简三角函数式的能力.
  (理)设函数f(x)=cosωx(ω&0),将y=f(x)的图像向右平移个单位长度后,所得的图像与原图像重合,则ω的最小值等于(  )
  A. B.3
  C.6 D.9
  [解析] 由题意可知,nT=(nN*),
  n·=(nN*),ω=6n(nN*),
  当n=1时,ω取得最小值6.
  5.已知函数f(x)=Acos(ωx+φ)的图像如图所示,f=-,则f(0)=________.
  [答案]
  [解析] 由图可知,=,T=,ω=3,故f(x)=Acos(3x+φ).f=-,Acos=-,Asinφ=-.又f=0,Acos=0,
  sinφ=-cosφ,f(0)=Acosφ=-Asinφ=.
  6.(2012·四川成都一模)已知函数f(x)=sin(x+)(x&0)的图像与x轴的交点从左到右依次为(x1,0),(x2,0),(x3,0),…,则数列{xn}的前4项和为________.
  [答案] 26
  [解析] 令f(x)=sin(x+)=0,则x+=kπ,
  x=3k-1(kN*),
  x1+x2+x3+x4=3(1+2+3+4)-4=26.
  7.(2012·山东理,17)已知向量m=(sinx,1),n=(Acosx,cos2x)(A&0),函数f(x)=m·n的最大值为6.
  (1)求A;
  (2)将函数y=f(x)的图像向左平移个单位,再将所得图像上各点的横坐标缩短为原来的倍,纵坐标不变,得到函数y=g(x)的图像.求g(x)在[0,]上的值域.
  [解析] (1)f(x)=m·n=Asinxcosx+cos2x
  =Asin2x+cos2x=Asin(2x+),
  因为f(x)的最大值为6,所以A=6.
  (2)函数y=f(x)的图像向左平移个单位得到函数y=6sin[2(x+)+]的图像,再将所得图像各点的横坐标缩短为原来的倍,纵坐标不变,得到函数g(x)=6sin(4x+).
  当x[0,]时,4x+[,],
  sin(4x+)[-,1],g(x)[-3,6].
  故函数g(x)在[0,]上的值域为[-3,6].
  [例1] 作出函数y=3sin,xR的简图,说明它与y=sinx图像之间的关系.
  [分析] 利用五点作图法作出函数图像,然后判断图像间的关系.
  函数y=Asin(ωx+φ)的图像[解析] 按“五点法”,令2x+分别取0,,π,π,2π时,x相应取-,,,,,所对应的五点是函数y=3sin,x的图像上起关键作用的点.
  列表:
  x - 2x+ 0 π 2π 3sin 0 3 0 -3 0
  描点画图,如图.
  利用函数的周期性,可以把上述简图向左、右扩展,就得到
  y=3sin,xR的简图.
  从图可以看出,y=3sin的图像,是用下面方法得到的.
  [点评] 解法1是先平移,后伸缩;解法2是先伸缩,后平移.表面上看,两种变换方法中的平移分别是和,是不同的,但由于平移时平移的对象已有变化,所以得到的结果是一致的.
  已知函数y=sin+cos(xR).
  (1)用“五点法”画出它的图像;
  (2)求它的振幅、周期及初相;
  (3)说明该函数的图像可由y=sinx的图像经过怎样的变换而得到?
  [解析] (1)y=2sin(+),令X=+,
  列表如下:
  X 0 π 2π x - y 0 2 0 -2 0
  描点连线得图像如图
  (2)振幅A=2,周期T=4π,初相为.
  (3)将y=sinx图像上各点向左平移个单位,得到y=sin(x+)的图像,再把y=sin(x+)的图像上各点的横坐标伸长到原来的2倍(纵坐标不变)得到y=sin(+)的图像.最后把y=sin(+)的图像上各点的纵坐标伸长到原来的2倍,即得函数y=2sin(+)的图像.
  [点评] 用“五点法”作图应抓住四条:化为y=Asin(ωx+φ)(A&0,ω&0)或y=Acos(ωx+φ)(A&0,ω&0)的形式;求出周期T=;求出振幅A;列出一个周期内的五个特殊点,当画出某指定区间上的图像时,应列出该区间内的特殊点.
  [例2] 已知函数f(x)=Asin(ωx+φ)+b(ω&0,|φ|&)的图像的一部分如图所示:
  (1)求f(x)的表达式;
  (2)试写出f(x)的对称轴方程.
  求三角函数y=Asin(ωx+φ)的解析式[分析] (1)函数的最大值为3,最小值为-1,周期T=π,从而A,b,ω可求,再代入(,3),可求φ值.
  (2)根据y=sinx的对称轴方程得到所求的对称轴方程.
  [解析] (1)由图像可知,函数的最大值M=3,最小值m=-1,
  则A==2,b==1.
  又T=2(π-)=π,ω===2,
  f(x)=2sin(2x+φ)+1.
  将x=,y=3代入上式,得sin(+φ)=1,
  ∴+φ=+2kπ,kZ,
  即φ=+2kπ,kZ,
  又|φ|&,φ=,
  f(x)=2sin(2x+)+1.
  (2)由2x+=+kπ(kZ)得
  x=+kπ,kZ,
  f(x)=2sin(2x+)+1的对称轴方程为:
  x=+kπ,kZ.
  [点评] 在确定φ值时,也可用五点法确定,往往以寻找“五点法”中的第一零点(-,0)作为突破口.具体如下:
  “第一点”(即图像上升时与x轴的交点)为ωx+φ=0;“第二点”(即图像的“峰点”)为ωx+φ=;“第三点”(即图像下降时与x轴的交点)为ωx+φ=π;“第四点”(即图像的“谷点”)为ωx+φ=;“第五点”为ωx+φ=2π.
  (文)已知简谐运动f(x)=2sin(|φ|&)的图像经过点(0,1),则该简谐运动的最小正周期T和初相φ分别为(  )
  A.T=6,φ= B.T=6,φ=
  C.T=6π,φ= D.T=6π,φ=
  [解析] 最小正周期T==6.
  f(x)过点(0,1),1=2sinφ,又|φ|&,φ=.
  (理)函数y=Asin(ωx+φ)(ω&0,|φ|&,xR)的部分图像如图所示,则函数表达式为______________.
  [答案] y=-4sin
  [解析] 由图像可以看出,A=4,=6+2,T=16.
  则ω==.将点(-2,0)代入y=4sin中得sin=0.-+φ=π,φ=,
  y=4sin.又|φ|&.
  ∴函数表达式y=4sin
  =-4sin.
  [点评] 三角函数图像中,图像上与x轴相邻两个交点之间的距离为半个周期,相邻两对称轴之间的距离为半个周期.
  [例3] 已知函数f(x)=sin2xsinφ+cos2xcosφ-sin(0&φ&π),其图像过点.
  (1)求φ的值;
  (2)将函数y=f(x)的图像上各点的横坐标缩短到原来的,纵坐标不变,得到函数y=g(x)的图像,求函数g(x)在[0,]上的最大值和最小值.
  三角函数性质的综合应用[分析] 本题考查三角函数的诱导公式及二倍角等基本公式的灵活应用、图像变换以及三角函数的最值问题、分析问题与解决问题的能力.可直接利用公式化简求值.
  [解析] (1)因为已知函数图像过点,所以有=sinsinφ+cos2cosφ-sin(0&φ&π),即有1=sinφ+cosφ-cosφ(0&φ&π),
  所以sin=1,所以φ+=,解得φ=.
  (2)由(1)知φ=,所以f(x)=sin2xsin+cos2xcos-sin(0&φ&π)
  =sin2x+cos2x-=sin2x+×-
  =sin,
  所以g(x)=sin,因为x,
  所以4x+,
  所以当4x+=时,g(x)取最大值;
  当4x+=时,g(x)取最小值-.
  [点评] 高考对两角和与差的正弦、余弦、正切公式及二倍角公式的考查往往渗透在研究三角函数性质中,需要利用这些公式,先把函数解析式化为y=Asin(ωx+φ)的形式,再进一步讨论其定义域、值域和最值、单调性、奇偶性、周期性、对称性等性质.
  已知函数f(x)=sin2ωx+sinωxsin(ωx+)+2cos2ωx,xR(ω&0),在y轴右侧的第一个最高点的横坐标为.
  (1)求f(x)的对称轴方程;
  (2)求f(x)的单调递增区间.
  [解析] (1)f(x)=sin2ωx+cos2ωx+
  =sin(2ωx+)+.
  令2ωx+=,将x=代入可得:ω=1,
  f(x)=sin(2x+)+,
  对称轴方程为2x+=kπ+(kZ),
  即x=kπ+(kZ).
  (2)由2kπ-≤2x+≤2kπ+(kZ)可得:
  单调增区间为[kπ-,kπ+](kZ).
&  重点关注:
&(责任编辑:周怡灵) &
更多&&文章推荐
相关文章导读
精彩是人生持续一辈子的过程,绝对不是高考和中考一锤子就可以定下来的,这一锤子只是你的精彩之一!
学而时习之1
奇奇怪怪很古怪
简单生活123
丨丨丨丨丨
丨丨丨丨丨丨丨
丨丨丨丨丨丨丨
丨丨丨丨丨丨丨
嬉皮光头仔
Oo槑小雅oO
briarglacier
briarglacier高一数学:三角函数y=Asin(ωX+φ)图像变换选择题答案写的是B。但是我不能理解啊,我用图像移动做出来对称轴是π+kπ,选项里没有一个符合的。不是应该把y=sinx图像横坐标变为原来的二分之一倍,再把整个图像左移单位吗?sinx对称轴是,那应该把对称轴先变为,再左移变成,不就是我的那个结果了吗?请写出本题正解过程,并指出我的思路有什么问题。答得好再加悬赏。谢谢!
珊姐vs云75
只要你知道y=sinα的图象特征,把所求函数转化为y=sinα的图象,你就会明白的...
为您推荐:
扫描下载二维码函数 y = A sin ( ωx + φ )
的部分图象如图所示,则函数的一个表达式为(  ).
A. y =-4si_百度知道
函数 y = A sin ( ωx + φ )
的部分图象如图所示,则函数的一个表达式为(  ).
A. y =-4si
函数 y = A sin ( ωx + φ )
部图象图所示则函数表达式(  ).
A. y =-4sin
B. y =4sin
C. y =-4sin
D. y =sin
提问者采纳
根据弦函数 y = A sin ( ωx + φ )
图象性质 T =2|6-(-2)|=16故 ω =
根据图象知 f (6)=0即 A sin
=0.由于| φ |≤
×6+ φ =π解 φ =
即 y = A sin
由 f (2)=-4即 A sin
=-4解 A =-4故 f ( x )=-4sin
其他类似问题
为您推荐:
如图所示的相关知识
等待您来回答
下载知道APP
随时随地咨询
出门在外也不愁}

我要回帖

更多关于 函数y sinx x的导数为 的文章

更多推荐

版权声明:文章内容来源于网络,版权归原作者所有,如有侵权请点击这里与我们联系,我们将及时删除。

点击添加站长微信