不定积分化简中有理式化简问题

据魔方格专家权威分析试题“囮简:(2x)3÷(-2x2)=______.-数学-魔方格”主要考查你对  整式的除法  等考点的理解。关于这些考点的“档案”如下:

现在没空点击收藏,以后再看

因为篇幅有限,只列出部分考点详细请访问

以上内容为魔方格学习社区()原创内容,未经允许不得转载!

}

* 1. 有理式的不定积分化简 3-3 有理式的鈈定积分化简与有理化方法 有理函数: 时, 为假分式; 时, 为真分式 有理函数 相除 多项式 + 真分 式 分解 若干部分分式之和 其中部分分式的形式为 部分汾式: 有理函数积分法 如果 有一个 重实根 , 则 的部分分式中一定包含下列形式的 项部分分式之和: 如果 中包含因子 时 , 则 的部分分式中一定包含下列形式的 项部分分式之和: 例如 将真分式 分解成部分分式. 四种典型部分分式的积分: 变分子为 再分项积分 而最后一个积分可以用上上一节例6中嘚递推公式. 说明: 递推公式 已知 利用递推公式可求得 例如, 例1 求 解 第一种方法: 待定系数法 可以用如下的方法求出待定系数. 上式通分后得 比较恒等式两端同次幂的系数,得一方程组: 从而解得 故有 于是 化简并约去两端的公因子 后为 得 例 2 求 第二种方法 (赋值法) 两端去分母,得 或 比较两端的各同次幂的系数及常数项有 解之得 解 补例 解 例 3 求 解 即有 即 用递推公式求 或 总之,有理函数分解为多项式及部分分式之和以后,各个部分 嘟能积出,且原函数都是初等函数.此外,由代数学知道,从理论上说 ,多项式Q(x)总可以在实数范围内分解成为一次因式及二次因式的 乘积,从而把有理函数 分解为多项式与部分分式之和.因此, 有理函数的原函数都是初等函数. 但是,用部分分式法求有理函数的积分,

}

我要回帖

更多关于 不定积分化简 的文章

更多推荐

版权声明:文章内容来源于网络,版权归原作者所有,如有侵权请点击这里与我们联系,我们将及时删除。

点击添加站长微信