已知常数a 0直线l:y=2x+1和抛物线c1:y=a(x-t-2)チ0ナ5+t,(a t是常数,a≠0.

当前位置:
>>>已知直线l:x=1+ty=-t(t为参数)与圆C:x=2cosθy=m+2sinθ(θ为参数)相..
已知直线l:x=1+ty=-t(t为参数)与圆C:x=2cosθy=m+2sinθ(θ为参数)相交于A,B两点,m为常数.(1)当m=0时,求线段AB的长;(2)当圆C上恰有三点到直线的距离为1时,求m的值.
题型:解答题难度:中档来源:不详
(1)由直线l:x=1+ty=-t(t为参数)消去参数化为普通方程l:x+y-1=0;当m=0时,圆C:x=2cosθy=m+2sinθ(θ为参数)消去参数θ得到曲线C:x2+y2=4,圆心C(0,0),半径r=2.∴圆心C到直线l的距离为&&d=12,∴|AB|=2r2-d2=14.(2)由(1)可知:x+y-1=0,又把圆C的参数方程的参数θ消去可得:x2+(y-m)2=4,∴圆心C(0,m),半径r=2.只要圆心C到直线l的距离=1即可满足:圆C上恰有三点到直线的距离为1的条件.由d=|m-1|2=1,解得m-1=±2,∴m=1+2或m=1-2.
马上分享给同学
据魔方格专家权威分析,试题“已知直线l:x=1+ty=-t(t为参数)与圆C:x=2cosθy=m+2sinθ(θ为参数)相..”主要考查你对&&直线与圆的位置关系,参数方程的概念&&等考点的理解。关于这些考点的“档案”如下:
现在没空?点击收藏,以后再看。
因为篇幅有限,只列出部分考点,详细请访问。
直线与圆的位置关系参数方程的概念
直线与圆的位置关系:
由直线与圆的公共点的个数,得出以下直线和圆的三种位置关系:(1)相交:直线与圆有两个公共点时,叫做直线和圆相交,这时直线叫做圆的割线。(2)相切:直线和圆有唯一公共点时,叫做直线和圆相切,这时直线叫做圆的切线,唯一的公共点叫做切点。(3)相离:直线和圆没有公共点时,叫做直线和圆相离。 其图像如下: 直线和圆的位置关系的性质:
(1)直线l和⊙O相交d<r(2)直线l和⊙O相切d=r;(3)直线l和⊙O相离d>r。直线与圆位置关系的判定方法:
(1)代数法:判断直线Ax+By+C=0和圆x2+y2+Dx+Ey+F=0的位置关系,可由&推出mx2+nx+p=0,利用判别式△进行判断.△&0则直线与圆相交;△=0则直线与圆相切;△&0则直线与圆相离.(2)几何法:已知直线Ax+By+C=0和圆,圆心到直线的距离 d&r则直线和圆相交;d=r则直线和圆相切;d&r则直线和圆相离.特别提醒:(1)上述两种方法,以利用圆心到直线的距离进行判定较为简捷,而判别式法也适用于直线与椭圆、双曲线、抛物线位置关系的判断.(2)直线与圆相交,应抓住半径、弦心距、半弦长组成的直角三角形,可使解法简单.
直线与圆位置关系的判定方法列表如下:
直线与圆相交的弦长公式:
(1)几何法:如图所示,直线l与圆C相交于A、B两点,线段AB的长即为l与圆相交的弦长。设弦心距为d,半径为r,弦为AB,则有|AB|= (2)代数法:直线l与圆交于直线l的斜率为k,则有当直线AB的倾斜角为直角,即斜率不存在时,|AB|=参数方程的概念:一般地,在给定的平面直角坐标系中,如果曲线上任意一点的坐标x,y都是某个变数t的函数 且对于t的每一个允许值,由这个方程组所确定的点M(x,y)都在这条曲线上,那么这个方程组称为这条曲线的参数方程,联系x、y之间关系的变数t称为参变数,简称参数。相对于参数方程而言,直接给出点的坐标间关系的方程叫做普通方程.参数方程和普通方程的互化:
在参数方程与普通方程的互化中,必须使x,y的取值范围保持一致.否则,互化就是不等价的。(1)参数方程化为普通方程的过程就是消参过程,常见方法有三种:①代入法:利用解方程的技巧求出参数t,然后代入消去参数;②三角法:利用三角恒等式消去参数;③整体消元法:根据参数方程本身的结构特征,从整体上消去.(2)普通方程化为参数方程需要引入参数.如:①直线的普通方程是2x-y+2=0,可以化为参数方程&②在普通方程xy=1中,令可以化为参数方程 关于参数的几点说明:
(1)参数是联系变数x,y的桥梁,可以是一个有物理意义或几何意义的变数,也可以是没有明显实际意义的变数.(2)同一曲线选取参数不同,曲线参数方程形式也不同.(3)在实际问题中要确定参数的取值范围.
参数方程的几种常用方法:
方法1参数方程与普通方程的互化:将曲线的参数方程化为普通方程的方法应视题目的特点而定,要选择恰当的方法消参,并要注意由于消参后引起的范围限制消失而造成的增解问题.常用的消参技巧有加减消参,代人消参,平方消参等.方法2求曲线的参数方程:求曲线的参数方程或应用曲线的参数方程,要熟记曲线参数方程的形式及参数的意义.方法3参数方程问题的解决方法:解决参数方程的一个基本思路是将其转化为普通方程,然后利用在直角坐标系下解决问题的方式进行解题.方法4利用圆的渐开线的参数方程求点:利用参数方程求解点时只需将参数代入方程就可求得。方法5求圆的摆线的参数方程:根据圆的摆线的参数方程的表达式,可知只需求出其中的r,也就是说,摆线的参数方程由圆的半径唯一确定,因此只需把点代人参数方程求出r值再代人参数方程的表达式.
发现相似题
与“已知直线l:x=1+ty=-t(t为参数)与圆C:x=2cosθy=m+2sinθ(θ为参数)相..”考查相似的试题有:
248662411659293234273248286659336934当前位置:
>>>已知二次函数y=(x-2a)2+(a-1)(a为常数),当a取不同的值时,其图象..
已知二次函数y=(x-2a)2+(a-1)(a为常数),当a取不同的值时,其图象构成一个“抛物线系”,如图18分别是当a=-1,a=0,a=l,a=2时二次函数的图象.它们的顶点在一条直线上,这条直线的解析式是y=&&&&&&&&&&&&&&&&&&&&.
题型:填空题难度:中档来源:不详
y=0.5x-1已知抛物线的顶点式,写出顶点坐标,用x、y代表顶点的横坐标、纵坐标,消去a得出x、y的关系式.解:由已知得抛物线顶点坐标为(2a,a-1),设x=2a①,y=a-1②,①-②×2,消去a得,x-2y=2,即y=x-1.
马上分享给同学
据魔方格专家权威分析,试题“已知二次函数y=(x-2a)2+(a-1)(a为常数),当a取不同的值时,其图象..”主要考查你对&&二次函数的定义,二次函数的图像,二次函数的最大值和最小值,求二次函数的解析式及二次函数的应用&&等考点的理解。关于这些考点的“档案”如下:
现在没空?点击收藏,以后再看。
因为篇幅有限,只列出部分考点,详细请访问。
二次函数的定义二次函数的图像二次函数的最大值和最小值求二次函数的解析式及二次函数的应用
定义:一般地,如果(a,b,c是常数,a≠0),那么y叫做x 的二次函数。 ①所谓二次函数就是说自变量最高次数是2;②二次函数(a≠0)中x、y是变量,a,b,c是常数,自变量x 的取值范围是全体实数,b和c可以是任意实数,a是不等于0的实数,因为a=0时,变为y=bx+c若b≠0,则y=bx+c是一次函数,若b=0,则y=c是一个常数函数。③二次函数(a≠0)与一元二次方程(a≠0)有密切联系,如果将变量y换成一个常数,那么这个二次函数就是一个一元二次函数。二次函数的解析式有三种形式: (1)一般式:(a,b,c是常数,a≠0); (2)顶点式: (a,h,k是常数,a≠0) (3)当抛物线与x轴有交点时,即对应二次好方程有实根x1和x2存在时,根据二次三项式的分解因式,二次函数可转化为两根式。如果没有交点,则不能这样表示。 二次函数的一般形式的结构特征:①函数的关系式是整式;②自变量的最高次数是2;③二次项系数不等于零。二次函数的判定:二次函数的一般形式中等号右边是关于自变量x的二次三项式;当b=0,c=0时,y=ax2是特殊的二次函数;判断一个函数是不是二次函数,在关系式是整式的前提下,如果把关系式化简整理(去括号、合并同类项)后,能写成(a≠0)的形式,那么这个函数就是二次函数,否则就不是。二次函数的图像是一条关于对称的曲线,这条曲线叫抛物线。 抛物线的主要特征:①有开口方向,a表示开口方向:a&0时,抛物线开口向上;a&0时,抛物线开口向下;②有对称轴;③有顶点;④c 表示抛物线与y轴的交点坐标:(0,c)。 二次函数图像性质:轴对称:二次函数图像是轴对称图形。对称轴为直线x=-b/2a对称轴与二次函数图像唯一的交点为二次函数图像的顶点P。特别地,当b=0时,二次函数图像的对称轴是y轴(即直线x=0)。a,b同号,对称轴在y轴左侧b=0,对称轴是y轴a,b异号,对称轴在y轴右侧顶点:二次函数图像有一个顶点P,坐标为P ( h,k )当h=0时,P在y轴上;当k=0时,P在x轴上。即可表示为顶点式y=a(x-h)^2+k。h=-b/2a, k=(4ac-b^2)/4a。开口:二次项系数a决定二次函数图像的开口方向和大小。当a&0时,二次函数图像向上开口;当a&0时,抛物线向下开口。|a|越大,则二次函数图像的开口越小。决定对称轴位置的因素:一次项系数b和二次项系数a共同决定对称轴的位置。当a&0,与b同号时(即ab&0),对称轴在y轴左; 因为对称轴在左边则对称轴小于0,也就是- b/2a&0,所以 b/2a要大于0,所以a、b要同号当a&0,与b异号时(即ab&0),对称轴在y轴右。因为对称轴在右边则对称轴要大于0,也就是- b/2a&0, 所以b/2a要小于0,所以a、b要异号可简单记忆为左同右异,即当a与b同号时(即ab&0),对称轴在y轴左;当a与b异号时(即ab&0 ),对称轴在y轴右。事实上,b有其自身的几何意义:二次函数图像与y轴的交点处的该二次函数图像切线的函数解析式(一次函数)的斜率k的值。可通过对二次函数求导得到。决定与y轴交点的因素:常数项c决定二次函数图像与y轴交点。二次函数图像与y轴交于(0,C)注意:顶点坐标为(h,k), 与y轴交于(0,C)。与x轴交点个数:a&0;k&0或a&0;k&0时,二次函数图像与x轴有2个交点。k=0时,二次函数图像与x轴只有1个交点。a&0;k&0或a&0,k&0时,二次函数图像与X轴无交点。当a&0时,函数在x=h处取得最小值ymin=k,在x&h范围内是减函数,在x&h范围内是增函数(即y随x的变大而变小),二次函数图像的开口向上,函数的值域是y&k当a&0时,函数在x=h处取得最大值ymax=k,在x&h范围内是增函数,在x&h范围内是减函数(即y随x的变大而变大),二次函数图像的开口向下,函数的值域是y&k当h=0时,抛物线的对称轴是y轴,这时,函数是偶函数。二次函数的最值:1.如果自变量的取值范围是全体实数,则当a&0时,抛物线开口向上,有最低点,那么函数在处取得最小值y最小值=;当a&0时,抛物线开口向下,有最高点,即当时,函数取得最大值,y最大值=。 也即是:如果自变量的取值范围是全体实数,那么函数在顶点处取得最大值(或最小值),即当时,。2.如果自变量的取值范围是,那么,首先要看是否在自变量取值范围内,若在此范围内,则当x=时,;若不在此范围内,则需要考虑函数在范围内的增减性,如果在此范围内,y随x的增大而增大,则当x=x2 时,,当x=x1 时;如果在此范围内,y随x的增大而减小,则当x=x1时,,当x=x2时&。 求二次函数的解析式:最常用的方法是待定系数法,根据题目的特点,选择恰当的形式,一般,有如下几种情况: (1)已知抛物线上三点的坐标,一般选用一般式; (2)已知抛物线顶点或对称轴或最大(小)值,一般选用顶点式; (3)已知抛物线与x轴的两个交点的横坐标,一般选用两点式; (4)已知抛物线上纵坐标相同的两点,常选用顶点式。 二次函数的应用:(1)应用二次函数才解决实际问题的一般思路: 理解题意;建立数学模型;解决题目提出的问题。 (2)应用二次函数求实际问题中的最值: 即解二次函数最值应用题,设法把关于最值的实际问题转化为二次函数的最值问题,然后按求二次函数最值的方法求解。求最值时,要注意求得答案要符合实际问题。 二次函数的三种表达形式:①一般式:y=ax2+bx+c(a≠0,a、b、c为常数),顶点坐标为 [,]把三个点代入函数解析式得出一个三元一次方程组,就能解出a、b、c的值。
②顶点式:y=a(x-h)2+k(a≠0,a、h、k为常数),顶点坐标为对称轴为直线x=h,顶点的位置特征和图像的开口方向与函数y=ax2的图像相同,当x=h时,y最值=k。有时题目会指出让你用配方法把一般式化成顶点式。例:已知二次函数y的顶点(1,2)和另一任意点(3,10),求y的解析式。解:设y=a(x-1)2+2,把(3,10)代入上式,解得y=2(x-1)2+2。注意:与点在平面直角坐标系中的平移不同,二次函数平移后的顶点式中,h&0时,h越大,图像的对称轴离y轴越远,且在x轴正方向上,不能因h前是负号就简单地认为是向左平移。具体可分为下面几种情况:当h&0时,y=a(x-h)2的图象可由抛物线y=ax2向右平行移动h个单位得到;当h&0时,y=a(x-h)2的图象可由抛物线y=ax2向左平行移动|h|个单位得到;当h&0,k&0时,将抛物线y=ax2向右平行移动h个单位,再向上移动k个单位,就可以得到y=a(x-h)2+k的图象;当h&0,k&0时,将抛物线y=ax2向右平行移动h个单位,再向下移动|k|个单位可得到y=a(x-h)2+k的图象;当h&0,k&0时,将抛物线y=ax2向左平行移动|h|个单位,再向上移动k个单位可得到y=a(x-h)2+k的图象;当h&0,k&0时,将抛物线y=ax2向左平行移动|h|个单位,再向下移动|k|个单位可得到y=a(x-h)2+k的图象。
③交点式:y=a(x-x1)(x-x2) (a≠0) [仅限于与x轴即y=0有交点时的抛物线,即b2-4ac≥0] .已知抛物线与x轴即y=0有交点A(x1,0)和 B(x2,0),我们可设y=a(x-x1)(x-x2),然后把第三点代入x、y中便可求出a。由一般式变为交点式的步骤:二次函数∵x1+x2=-b/a, x1?x2=c/a(由韦达定理得),∴y=ax2+bx+c=a(x2+b/ax+c/a)=a[x2-(x1+x2)x+x1?x2]=a(x-x1)(x-x2).重要概念:a,b,c为常数,a≠0,且a决定函数的开口方向。a&0时,开口方向向上;a&0时,开口方向向下。a的绝对值可以决定开口大小。a的绝对值越大开口就越小,a的绝对值越小开口就越大。能灵活运用这三种方式求二次函数的解析式;能熟练地运用二次函数在几何领域中的应用;能熟练地运用二次函数解决实际问题。二次函数的其他表达形式:①牛顿插值公式:f(x)=f[x0]+f[x0,x1](x-x0)+f[x0,x1,x2](x-x0)(x-x1)+...f[x0,...xn](x-x0)...(x-xn-1)+Rn(x)由此可引导出交点式的系数a=y/(x·x)(y为截距) 二次函数表达式的右边通常为二次三项式。双根式y=a(x-x1)*(x-x2)若ax2+bx+c=0有两个实根x1,x2,则y=a(x-x1)(x-x2)此抛物线的对称轴为直线x=(x1+x2)/2。③三点式已知二次函数上三个点,(x1,f(x1))(x2,f(x2))(x3,f(x3))则f(x)=f(x3)(x-x1)(x-x2)/(x3-x1)(x3-x2)+f(x2)(x-x1)*(x-x3)/(x2-x1)(x2-x3)+f(x1)(x-x2)(x-x3)/(x1-x2)(x1-x3)与X轴交点的情况当△=b2-4ac&0时,函数图像与x轴有两个交点。(x1,0), (x2,0);当△=b2-4ac=0时,函数图像与x轴只有一个交点。(-b/2a,0)。Δ=b2-4ac&0时,抛物线与x轴没有交点。X的取值是虚数(x=-b±√b2-4ac的值的相反数,乘上虚数i,整个式子除以2a)二次函数解释式的求法:就一般式y=ax2+bx+c(其中a,b,c为常数,且a≠0)而言,其中含有三个待定的系数a ,b ,c.求二次函数的一般式时,必须要有三个独立的定量条件,来建立关于a ,b ,c 的方程,联立求解,再把求出的a ,b ,c 的值反代回原函数解析式,即可得到所求的二次函数解析式。
1.巧取交点式法:知识归纳:二次函数交点式:y=a(x-x1)(x-x2) (a≠0)x1,x2分别是抛物线与x轴两个交点的横坐标。已知抛物线与x轴两个交点的横坐标求二次函数解析式时,用交点式比较简便。①典型例题一:告诉抛物线与x轴的两个交点的横坐标,和第三个点,可求出函数的交点式。例:已知抛物线与x轴交点的横坐标为-2和1 ,且通过点(2,8),求二次函数的解析式。点拨:解设函数的解析式为y=a(x+2)(x-1),∵过点(2,8),∴8=a(2+2)(2-1)。解得a=2,∴抛物线的解析式为:y=2(x+2)(x-1),即y=2x2+2x-4。②典型例题二:告诉抛物线与x轴的两个交点之间的距离和对称轴,可利用抛物线的对称性求解。例:已知二次函数的顶点坐标为(3,-2),并且图象与x轴两交点间的距离为4,求二次函数的解析式。点拨:在已知抛物线与x轴两交点的距离和顶点坐标的情况下,问题比较容易解决.由顶点坐标为(3,-2)的条件,易知其对称轴为x=3,再利用抛物线的对称性,可知图象与x轴两交点的坐标分别为(1,0)和(5,0)。此时,可使用二次函数的交点式,得出函数解析式。
2.巧用顶点式:顶点式y=a(x-h)2+k(a≠0),其中(h,k)是抛物线的顶点。当已知抛物线顶点坐标或对称轴,或能够先求出抛物线顶点时,设顶点式解题十分简洁,因为其中只有一个未知数a。在此类问题中,常和对称轴,最大值或最小值结合起来命题。在应用题中,涉及到桥拱、隧道、弹道曲线、投篮等问题时,一般用顶点式方便.①典型例题一:告诉顶点坐标和另一个点的坐标,直接可以解出函数顶点式。例:已知抛物线的顶点坐标为(-1,-2),且通过点(1,10),求此二次函数的解析式。点拨:解∵顶点坐标为(-1,-2),故设二次函数解析式为y=a(x+1)2-2 (a≠0)。把点(1,10)代入上式,得10=a·(1+1)2-2。∴a=3。∴二次函数的解析式为y=3(x+1)2-2,即y=3x2+6x+1。②典型例题二:如果a&0,那么当 时,y有最小值且y最小=;如果a&0,那么,当时,y有最大值,且y最大=。告诉最大值或最小值,实际上也是告诉了顶点坐标,同样也可以求出顶点式。例:已知二次函数当x=4时有最小值-3,且它的图象与x轴两交点间的距离为6,求这个二次函数的解析式。点拨:析解∵二次函数当x=4时有最小值-3,∴顶点坐标为(4,-3),对称轴为直线x=4,抛物线开口向上。由于图象与x轴两交点间的距离为6,根据图象的对称性就可以得到图象与x轴两交点的坐标是(1,0)和(7,0)。∴抛物线的顶点为(4,-3)且过点(1,0)。故可设函数解析式为y=a(x-4)2-3。将(1,0)代入得0=a(1-4)2-3, 解得a=13.∴y=13(x-4)2-3,即y=13x2-83x+73。③典型例题三:告诉对称轴,相当于告诉了顶点的横坐标,综合其他条件,也可解出。例如:(1)已知二次函数的图象经过点A(3,-2)和B(1,0),且对称轴是直线x=3.求这个二次函数的解析式. (2)已知关于x的二次函数图象的对称轴是直线x=1,图象交y轴于点(0,2),且过点(-1,0),求这个二次函数的解析式. (3)已知抛物线的对称轴为直线x=2,且通过点(1,4)和点(5,0),求此抛物线的解析式. (4)二次函数的图象的对称轴x=-4,且过原点,它的顶点到x轴的距离为4,求此函数的解析式.④典型例题四:利用函数的顶点式,解图像的平移等问题非常方便。例:把抛物线y=ax2+bx+c的图像向右平移3 个单位, 再向下平移2 个单位, 所得图像的解析式是y=x2-3x+5, 则函数的解析式为_______。点拨:解先将y=x2-3x+5化为y=(x-32)2+5-94, 即y=(x-32)2+114。∵它是由抛物线的图像向右平移3 个单位, 再向下平移2 个单位得到的,∴原抛物线的解析式是y=(x-32+3)2+114+2=(x+32)2+194=x2+3x+7。
发现相似题
与“已知二次函数y=(x-2a)2+(a-1)(a为常数),当a取不同的值时,其图象..”考查相似的试题有:
480491728152548489735206719918699345已知Y=ax^7+bx^5+cx^3+de+e,其中a,b,c,d为常数,当x=2时,y=23;当x=-2时,y=35;求e的值_百度知道
已知Y=ax^7+bx^5+cx^3+de+e,其中a,b,c,d为常数,当x=2时,y=23;当x=-2时,y=35;求e的值
提问者采纳
Y=ax^7+bx^5+cx^3+dx+ex=2时Y=a2^7+b2^5+c2^3+d2+e=23=&a2^7+b2^5+c2^3+d2=23-ex=-2时Y=a(-2)^7+b(-2)^5+c(-2)^3+d(-2)+e=35=&-[a2^7+b2^5+c2^3+d2]=35-e所以-(35-e)=23-e=&2e=23+35=58e=29
提问者评价
其他类似问题
等待您来回答
下载知道APP
随时随地咨询
出门在外也不愁当前位置:
>>>已知函数f(x)=lnx-ax+1,a∈R是常数.(1)求函数y=f(x)的图象在点P(..
已知函数f(x)=lnx-ax+1,a∈R是常数.(1)求函数y=f(x)的图象在点P(1,f(1))处的切线l的方程;(2)证明函数y=f(x)(x≠1)的图象在直线l的下方;(3)若函数y=f(x)有零点,求实数a的取值范围.
题型:解答题难度:中档来源:不详
(1)f′(x)=1x-a…(2分)f(1)=-a+1,kl=f'(1)=1-a,所以切线l的方程为y-f(1)=kl(x-1),即y=(1-a)x.…(4分)(2)令F(x)=f(x)-(1-a)x=lnx-x+1,x>0,则F′(x)=1x-1&=1x(1-x)&,解F′(x)=0得x=1.
(1,+∞)
↘F(1)<0,所以?x>0且x≠1,F(x)<0,f(x)<(1-a)x,即函数y=f(x)(x≠1)的图象在直线l的下方.&&&&&&…(9分)(3)y=f(x)有零点,即f(x)=lnx-ax+1=0有解,a=lnx+1x.令&g(x)=lnx+1x,g′(x)=(lnx+1x)′=1-(lnx+1)x2=-lnxx2,解g'(x)=0得x=1.…(11分)则g(x)在(0,1)上单调递增,在(1,+∞)上单调递减,当x=1时,g(x)的最大值为g(1)=1,所以a≤1.…(13分)
马上分享给同学
据魔方格专家权威分析,试题“已知函数f(x)=lnx-ax+1,a∈R是常数.(1)求函数y=f(x)的图象在点P(..”主要考查你对&&函数的零点与方程根的联系,函数的极值与导数的关系,函数的最值与导数的关系&&等考点的理解。关于这些考点的“档案”如下:
现在没空?点击收藏,以后再看。
因为篇幅有限,只列出部分考点,详细请访问。
函数的零点与方程根的联系函数的极值与导数的关系函数的最值与导数的关系
函数零点的定义:
一般地,如果函数y =f(x)在实数a处的值等于零,即f(a)=o,则a叫做这个函数的零点,有时我们把一个函数的图象与x轴的交点的横坐标,也叫做这个函数的零点。&&&&&&&&&&&&&&& 函数零点具有的性质:
对于任意函数y=(x)只要它的图象是连续不间断的,则有:(1)当它通过零点时(不是二重零点),函数值变号.如函数f(x)=x2-2x -3的图象在零点-1的左边时,函数值取正号,当它通过第一个零点-1时,函数值由正变为负,在通过第二个零点3时,函数值又由负变为正.(2)在相邻两个零点之间所有的函数值保持同号,方程的根与函数的零点的联系:
方程f(x)=0有实根函数y=f(x)的图像与x轴有交点函数y=f(x)有零点 极值的定义:
(1)极大值: 一般地,设函数f(x)在点x0附近有定义,如果对x0附近的所有的点,都有f(x)<f(x0),就说f(x0)是函数f(x)的一个极大值,记作y极大值=f(x0),x0是极大值点; (2)极小值:一般地,设函数f(x)在x0附近有定义,如果对x0附近的所有的点,都有f(x)>f(x0),就说f(x0)是函数f(x)的一个极小值,记作y极小值=f(x0),x0是极小值点。
极值的性质:
(1)极值是一个局部概念,由定义知道,极值只是某个点的函数值与它附近点的函数值比较是最大或最小,并不意味着它在函数的整个的定义域内最大或最小; (2)函数的极值不是唯一的,即一个函数在某区间上或定义域内极大值或极小值可以不止一个; (3)极大值与极小值之间无确定的大小关系,即一个函数的极大值未必大于极小值; (4)函数的极值点一定出现在区间的内部,区间的端点不能成为极值点,而使函数取得最大值、最小值的点可能在区间的内部,也可能在区间的端点。 判别f(x0)是极大、极小值的方法:
若x0满足,且在x0的两侧f(x)的导数异号,则x0是f(x)的极值点, 是极值,并且如果在x0两侧满足“左正右负”,则x0是f(x)的极大值点,f(x0)是极大值;如果在x0两侧满足“左负右正”,则x0是f(x)的极小值点,f(x0)是极小值。
求函数f(x)的极值的步骤:
(1)确定函数的定义区间,求导数f′(x); (2)求方程f′(x)=0的根; (3)用函数的导数为0的点,顺次将函数的定义区间分成若干小开区间,并列成表格,检查f′(x)在方程根左右的值的符号,如果左正右负,那么f(x)在这个根处取得极大值;如果左负右正,那么f(x)在这个根处取得极小值;如果左右不改变符号即都为正或都为负,则f(x)在这个根处无极值。
对函数极值概念的理解:
极值是一个新的概念,它是研究函数在某一很小区域时给出的一个概念,在理解极值概念时要注意以下几点:①按定义,极值点x0是区间[a,b]内部的点,不会是端点a,b(因为在端点不可导).如图②极值是一个局部性概念,只要在一个小领域内成立即可.要注意极值必须在区间内的连续点取得.一个函数在定义域内可以有许多个极小值和极大值,在某一点的极小值也可能大于另一个点的极大值,也就是说极大值与极小值没有必然的大小关系,即极大值不一定比极小值大,极小值不一定比极大值小,如图.&&③若fx)在(a,b)内有极值,那么f(x)在(a,b)内绝不是单调函数,即在区间上单调的函数没有极值.④若函数f(x)在[a,b]上有极值且连续,则它的极值点的分布是有规律的,相邻两个极大值点之间必有一个极小值点,同样相邻两个极小值点之间必有一个极大值点,一般地,当函数f(x)在[a,b]上连续且有有限个极值点时,函数f(x)在[a,b]内的极大值点、极小值点是交替出现的,⑤可导函数的极值点必须是导数为0的点,但导数为0的点不一定是极值点,不可导的点也可能是极值点,也可能不是极值点,&&&函数的最大值和最小值:
在闭区间[a,b]上连续的函数f(x)在[a,b]上必有最大值与最小值,分别对应该区间上的函数值的最大值和最小值。
&利用导数求函数的最值步骤:
(1)求f(x)在(a,b)内的极值; (2)将f(x)的各极值与f(a)、f(b)比较得出函数f(x)在[a,b]上的最值。
&用导数的方法求最值特别提醒:
①求函数的最大值和最小值需先确定函数的极大值和极小值,因此,函数极大值和极小值的判别是关键,极值与最值的关系:极大(小)值不一定是最大(小)值,最大(小)值也不一定是极大(小)值;②如果仅仅是求最值,还可将上面的办法化简,因为函数fx在[a,b]内的全部极值,只能在f(x)的导数为零的点或导数不存在的点取得(下称这两种点为可疑点),所以只需要将这些可疑点求出来,然后算出f(x)在可疑点处的函数值,与区间端点处的函数值进行比较,就能求得最大值和最小值;③当f(x)为连续函数且在[a,b]上单调时,其最大值、最小值在端点处取得。&生活中的优化问题:
生活中经常遇到求利润最大、用料最省、效率最高等问题,这些问题通常称为优化问题,解决优化问题的方法很多,如:判别式法,均值不等式法,线性规划及利用二次函数的性质等,不少优化问题可以化为求函数最值问题.导数方法是解这类问题的有效工具.
用导数解决生活中的优化问题应当注意的问题:
(1)在求实际问题的最大(小)值时,一定要考虑实际问题的意义,不符合实际意义的值应舍去;(2)在实际问题中,有时会遇到函数在区间内只有一个点使f'(x)=0的情形.如果函数在这点有极大(小)值,那么不与端点比较,也可以知道这就是最大(小)值;(3)在解决实际优化问题时,不仅要注意将问题中涉及的变量关系用函数关系表示,还应确定出函数关系式中自变量的定义区间.
利用导数解决生活中的优化问题:
&(1)运用导数解决实际问题,关键是要建立恰当的数学模型(函数关系、方程或不等式),运用导数的知识与方法去解决,主要是转化为求最值问题,最后反馈到实际问题之中.&(2)利用导数求f(x)在闭区间[a,b]上的最大值和最小值的步骤,&&①求函数y =f(x)在(a,b)上的极值;& ②将函数y=f(x)的各极值与端点处的函数值f(a)、f(b)比较,其中最大的一个是最大值,最小的一个是最小值.&&(3)定义在开区间(a,b)上的可导函数,如果只有一个极值点,该极值点必为最值点.
发现相似题
与“已知函数f(x)=lnx-ax+1,a∈R是常数.(1)求函数y=f(x)的图象在点P(..”考查相似的试题有:
888234808285273734780387430087803432}

我要回帖

更多关于 已知a为正的常数 的文章

更多推荐

版权声明:文章内容来源于网络,版权归原作者所有,如有侵权请点击这里与我们联系,我们将及时删除。

点击添加站长微信