为什么峰流速仪增加,浓度差增加

扫扫二维码,随身浏览文档
手机或平板扫扫即可继续访问
氨吹脱—粉末活性炭SBR—混凝沉淀工艺处理城市垃圾渗滤液的研究
举报该文档为侵权文档。
举报该文档含有违规或不良信息。
反馈该文档无法正常浏览。
举报该文档为重复文档。
推荐理由:
将文档分享至:
分享完整地址
文档地址:
粘贴到BBS或博客
flash地址:
支持嵌入FLASH地址的网站使用
html代码:
&embed src='/DocinViewer-4.swf' width='100%' height='600' type=application/x-shockwave-flash ALLOWFULLSCREEN='true' ALLOWSCRIPTACCESS='always'&&/embed&
450px*300px480px*400px650px*490px
支持嵌入HTML代码的网站使用
您的内容已经提交成功
您所提交的内容需要审核后才能发布,请您等待!
3秒自动关闭窗口(2010o浦口区二模)联合钢铁工业的基本生产流程示意图如下,请回答相关问题.(1)上述3种含铁物质中,属于金属材料的是:;(2)铁在氧气中燃烧的化学方程式为:(3)某同学取赤铁矿样品10g,与足量的一氧化碳充分反应,并将生成的气体通入足量的氢氧化钠的溶液中,溶液的质量增加了5.5g.请你根据该同学的实验数据,计算出赤铁矿样品中三氧化二铁的质量分数.(4)铁制品使用过程中会生锈,情况调查如下:调查内容掉漆的自行车裸露在混凝土以外的钢筋涂油的无锈铁钉镀铬铁质剪刀铁制品锈蚀的现象风吹雨淋,时间长了,掉漆的部分会生锈时间长了钢筋表面出现锈层铁钉较长时间仍不生锈剪刀较长时间不生锈从调查中可知铁制品生锈的主要条件是;工业上常用稀盐酸除去铁锈,反应的化学方程式为:;下列保护铁资源的建议中,正确的是.(填字母)A.防止铁制品腐蚀&&&&&&&B.回收利用废旧铁制品&&&&&&&&C.任意开采铁矿石(5)锰和铁在周期表中位置、相对原子质量(锰是55,铁是56)相近.锰与铁的金属活动性谁更强呢?实验设计:相同温度下,取大小相同的两种金属薄片,用砂纸将表面擦光亮,分别投入等体积、等浓度且足量的稀盐酸中反应,观察现象,填写结论.金属铁锰与盐酸反应现象放出气泡速度缓慢放出气泡速度较快结论除了比较与酸反应产生气体速度的快慢,你还有其他化学方法可比较这二种金属活动性的强弱吗?请举出一种方法(写出原理即可).
提 示 请您或[登录]之后查看试题解析 惊喜:新手机注册免费送20天VIP和20个雨点!无广告查看试题解析、半价提问反渗透问题专集&&-&&[推荐度: 23]
帖子94&精华&积分1888&威望2 &金钱279 &UP值2 &最后登录&
反渗透问题专集 发帖人: nnqxh 点击量: 11759
反渗透问题专集
1.反渗透纯水机系统应多久清洗一次?
 一般情况下,当标准化通量下降10~15%时,或系统脱盐率下降10~15%,或操作压力及段间压差升高10~15%,应清洗RO系统。清洗频度与系统预处理程度有直接的关系,当SDI15<3时,清洗频度可能为每年4次;当SDI15在5左右时,清洗频度可能要加倍但清洗频度取决于每一个现场的实际情况。
2. 什么是SDI?
 目前行之有效的评价RO/NF系统进水中胶体污染可能的最好是测量进水的淤积密度指数(SDI,又称污堵指数),这是在RO之前必须确定的重要参数,在RO/NF运行过程中,必须定期进行测量(对于地表水每日测定2~3次),ASTM D4189-82规定了该测试的标准。膜系统的进水规定是SDI15值必须≤5。降低SDI预处理的有效有多介质过滤器、超滤、微滤等。在过滤之前添加聚电介质有时能增强上述物理过滤、降低SDI值的能力。
3 一般进水应该选用反渗透还是离子交换?
 在许多进水条件下,采用离子交换树脂或反渗透在技术上均可行,工艺的选择则应由经济性比较而定,一般情况下,含盐量越高,反渗透就越经济,含盐量越低,离子交换就越经济。由于反渗透技术的大量普及,采用反渗透+离子交换工艺或多级反渗透或反渗透+其它深度除盐技术的组合工艺已经成为公认的技术与经济更为合理的方案,如需深入了解,请咨询公司代表。4. 反渗透膜元件一般能用几年?膜的使用寿命取决于膜的化学稳定性、元件的物理稳定性、可清洗性、进水水源、预处理、清洗频率、操作管理水平等。根据经济分析通常为5年以上。
4. 反渗透膜元件一般能用几年?
膜的使用寿命取决于膜的化学稳定性、元件的物理稳定性、可清洗性、进水水源、预处理、清洗频率、操作管理水平等。根据经济分析通常为5年以上。
5. 反渗透和纳滤之间有何区别?
  纳滤是位于反渗透合同超滤之间的膜法液体分离技术,反渗透可以脱除最小的溶质,分子量小于0.0001微米,纳滤可脱除分子量在0.001微米左右的溶质。纳滤本质上是一种低压反渗透,用于处理后产水纯度不特别严格的场合,纳滤适合于处理井水和地表水。纳滤适用于没有必要象反渗透那样的高脱盐率的水处理系统,但对于硬度成份的脱除能力很高,有时被称为“软化膜”,纳滤系统运行压力低,能耗低于相对应的反渗透系统。
6. 膜技术具有怎样的分离能力?
  反渗透是目前最精密的液体过滤技术,反渗透膜对溶解性的盐等无机分子和分子量大于100的有机物起截留作用,另一方面,水分子可以自由的透过反渗透膜,典型的可溶性盐的脱除率为&95~99%。操作压力从进水为苦咸水时的7bar(100psi)到海水时的69bar(1,000psi)。纳滤能脱除颗粒在1nm(10埃)的杂质和分子量大于200~400的有机物,溶解性固体的脱除率20~98%,含单价阴离子的盐(如NaCl或 CaCl2)脱除率为20~80%,而含二价阴离子的盐(如MgSO4)脱除率较高,为90~98%。超滤对于大于100~1,000埃(0.01~0.1微米)的大分子有分离作用。所有的溶解性盐和小分子能透过超滤膜,可脱除的物质包括胶体、蛋白质、微生物和大分子有机物。多数超滤膜的截留分子量为1,000~100,000。微滤脱除颗粒的范围约0.1~1微米,通常情况下,悬浮物和大颗粒胶体能被截留而大分子和溶解性盐可自由透过微滤膜,微滤膜用于去除细菌、微絮凝物或总悬浮固体TSS,典型的膜两侧的压力为1~3bar.
7. 谁销售膜清洗剂或提供清洗服务?
  本水处理公司可以提供专用膜清洗剂和清洗服务,用户也可跟据膜公司或供应商的建议自行购买清洗剂进行膜清洗.
8. 反渗透膜进水最大允许二氧化硅浓度多少?
  最大允许二氧化硅的浓度取决于温度、pH值以及阻垢剂,通常在不加阻垢剂时浓水端最高允许浓度为100ppm,某些阻垢剂能允许浓水中的二氧化硅浓度最高为240ppm,请咨询阻垢剂供应商。
9. 铬对RO膜有何影响?
  某些重金属如铬会对氯的氧化起到催化作用,进而引起膜片的不可逆性能衰减。这是因为在水中Cr6+比Cr3+的稳定性差。似乎氧化价位高的金属离子,这种破坏作用就更强。因此,应在预处理部分将铬的浓度降低或至少应将Cr6+还原成Cr3+。
10. RO系统一般需要何种预处理?
  通常的预处理系统组成如下,粗滤(~80微米)以除去大颗粒,加入次氯酸钠等氧化剂,然后经多介质过滤器或澄清池进行精密过滤,再加入亚硫酸氢钠还原余氯等氧化剂,最后在高压泵入口之前安装保安滤器。保安滤器的作用顾名思义,它是作为最终的保险措施,以防止偶然大颗粒对高压泵叶轮和膜元件的破坏作用。含颗粒悬浮物较多的水源,通常需要更高程度的预处理,才能达到规定的进水要求;硬度含量高的水源,建议采用软化或加酸和加阻垢剂等,对于微生物及有机物含量高的水源,还需要使用活性炭或抗污染膜元件。
11. 反渗透能脱除微生物如病毒和细菌吗?
  反渗透(RO)非常致密,对病毒、噬菌体和细菌具有非常高的脱除率,至少在3log以上(脱除率&99.9%)。但是还须注意的是,在很多情况下,膜产水侧仍可能会出现微生物再次滋生,这主要取决于装配、监测和维护的方式,就是说,某一个系统的脱除微生物的能力关键取决于系统设计、操作和管理是否恰当而不是膜元件本身的性质。
12. 温度对产水量有何影响?
  温度越高,产水量越高,反之亦然,在较高的温度条件下运行时,应调低运行压力,使产水量保持不变,反之亦然。关于产水量变化的温度校正系数TCF请查阅相关章节。
13. 什么是颗粒和胶体污染?如何测定?
 反渗透或纳滤系统一旦出现颗粒和胶体的污堵就会严重影响膜的产水量,有时也会降低脱盐率。胶体污堵的早期症状是系统压差的增加,膜进水水源中颗粒或胶体的来源因地而异,常常包括细菌、淤泥、胶体硅、铁腐蚀产物等,预处理部分所用的药品如聚合铝和三氯化铁或阳离子聚电介质,如果不能在澄清池或介质过滤器中有效的除去,也可能引起污堵。此外阳离子性的聚电介质也会与阴离子性的阻垢剂反应,其沉淀物会污堵膜元件,水中这类污堵倾向或预处理是否合格采用SDI15进行评价,请参考相关章节的详细介绍。
14. 不作系统冲洗,最长允许停机多久?
 如果系统使用阻后剂,当水温在20~38℃之间,大约4小时;在20℃以下时,大约8小时;如果系统未用阻垢剂,约1天。15. 怎样才能使膜系统的能耗降低?
 采用低能耗膜元件即可,但应注意到它们的脱盐率比标准膜元件略低。
16. 反渗透纯水系统能否频繁的启停?
 膜系统是按连续运行作为设计基准的,但在实际操作时,总会有一定频度的开机和停机。当膜系统停机时,必须用其产水或经过预处理合格的水进行低压冲洗,从膜元件中置换掉高浓度但含阻垢剂的浓水。还应采取措施预防系统内水漏掉而引入空气,因为元件失水干掉的话,可能会产生不可逆的产水通量损失。如果停机小于24小时,则无需采取预防微生物滋生的措施。但停机时间超过上述规定,应采用保护液作系统保存或定时冲洗膜系统。
17. 膜元件上安装盐水密封圈其方向怎样确定?
  要求膜元件上的盐水密封圈装在元件进水端,同时开口面向进水方向,当给压力容器进水时,其开口(唇边)将进一步张开,完全封住进水从膜元件与压力容器内壁间的旁流。
18. 怎样从水中脱除硅?
水中硅以两种形态存在,活性硅(单体硅)和胶体硅(多元硅):胶体硅没有离子的特征,但尺度相对较大,胶体硅能被精细的物理过滤过程所截留,如反渗透,也可以通过凝聚技术降低水中的含量,如混凝澄清池,但是那些需要依靠离子电荷特征的分离技术,如离子交换树脂和连续电去离子过程(CDI),对脱除胶体硅效果十分有限。
  活性硅的尺寸比胶体硅小得多,这样大多数的物理过滤技术如混凝澄清、过滤和气浮等均无法脱除活性硅,能够有效脱除活性硅的过程是反渗透、离子交换和连续电去离子过程。
19. pH对脱除率、产水量和膜寿命有何影响?
  反渗透膜产品对应pH范围,一般为2~11,pH对膜性能本身的影响很小,这是与其它膜产品不同的显著特点之一,但是水中许多离子本身的特性受pH的影响巨大,例如当柠檬酸等类的弱酸在低pH条件下,主要呈非离子态,而在高pH值下出现解离而呈离子态。由于同一离子,荷电程度高,膜的脱除率高,荷电程度低或不荷电,则膜的脱除率低,因此pH对某些杂质的脱除率影响十分巨大。
20. 进水TDS和电导率之间关系怎样?
 当获得进水电导率数值时,必须将其转化成TDS数值,以便能在软件设计时输入。对于多数水源,电导率/TDS的比率为1.2~1.7之间,为了进行ROSA设计,海水选用1.4比率而苦咸水选用1.3比率进行换算,通常能够得到较好的近似换算率。
21. 怎样知道膜是否已受到污染?
以下是污染的常见症状:
在标准压力下,产水量下降
为了达到标准产水量,必须提高运行压力
进水与浓水间的压降增加
膜元件的重量增加
膜脱除率明显变化(增加或降低)
当元件从压力容器内取出时,将水倒在竖起的膜元件进水侧,水不能流过膜元件,仅从端面溢出(表明进水流道完全堵塞)。
22. 怎样防止膜元件原包装内的微生物滋生?
  当保护液出现混浊时,很可能是因为微生物滋生之故。用亚硫酸氢钠保护的膜元件应每三个月查看一次。当保护液出现混浊时,应从保存密封袋中取出元件,重新浸泡在新鲜保护液中,保护液浓度为1%(重量)食品级亚硫酸氢钠(未经钴活化过),浸泡约1小时,并重新密封封存,重新包装前应将元件沥干。
23. RO膜元件和IX离子交换树脂的进水要求有哪些?
理论上讲,进入RO和IX系统应不含有如下杂质:
氧化剂,如余氯等
油或脂类物质(必须低于仪器的检测下限)
有机物和铁-有机物的络合物
铁、铜、铝腐蚀产物等金属氧化物
进水水质对RO元件和IX树脂的寿命及性能将产生巨大的影响。
24. RO膜能脱除哪些杂质?
  RO膜能够很好地脱除离子和有机物,反渗透膜比纳滤膜有更高的脱除率,反渗透通常能脱除给水中99%的盐份,进水中的有机物的脱除率≥99%。
25. 怎样知道你的膜系统该用何种清洗方法进行清洗?
  为了获得最好的清洗效果,选择能对症的清洗药剂和清洗步骤非常重要,错误的清洗实际上还会恶化系统性能,一般来说,无机结垢污染物,推荐使用酸性清洗液,微生物或有机污染物,推荐使用碱性清洗液。
26. 为什么RO产水的pH值低于进水的pH值?
  当了解到CO2、HCO3-和CO3=之间的平衡,就能够找到这一问题的最好答案,在密闭的体系内,CO2、HCO3-和CO3=的相对含量随pH值的变化而变化,低pH值条件下,CO2占主要部份,在中等pH值范围内,主要为HCO3-,高pH值范围内,主要为CO3=。由于RO膜可以脱除溶解性的离子而不能脱除溶解性的气体,RO产水中的CO2含量与RO进水中CO2的含量基本相同,但是HCO3-和CO3=常常能够减少1~2个数量级,这样就会打破进水中CO2、HCO3-和CO3=之间的平衡,在系列反应中,CO2将与H2O结合发生如下反应平衡的转移,直到建立新的平衡。
HCO3- CO2 ++ H+ H2O
如果进水中含有CO2,则RO的产水pH值总会降低,对于大多数RO系统反渗透产水的pH值将有1~2个pH值的下降,当进水碱度和HCO3-高时,产水的pH值下降就更大。
为数极少的进水,含较少的CO2、HCO3-或CO3=这样看到产水pH值的变化就少,某些国家和地区,对于饮用水pH值有规定,一般为6.5~9.0,根据我们的理解,这是为了防止输水管路的腐蚀,而饮用低pH值的水,本身不会引起任何健康问题,众所周知,许多市售含碳酸饮料其pH值在2~4之间。
[ 本帖最后由 hong6601 于
13:31 编辑 ]
水处理工程师
帖子279&精华&积分1191&威望7 &金钱1048 &UP值0 &最后登录&
不错,但要是能够充实一下就更好了
帖子45&精华&积分223&威望0 &金钱54 &UP值0 &最后登录&
谢谢楼主,让我明白了许多的问题
帖子588&精华&积分1728&威望12 &金钱1825 &UP值0 &最后登录&
本水处理公司指的是哪家,不妨说一下
帖子226&精华&积分1223&威望3 &金钱342 &UP值0 &最后登录&
好的资料,就得下呀.& && &
& && &&&太多了, 看不完的资料!& &&&
UID8476&阅读权限50&在线时间111 小时&注册时间&最后登录&
帖子86&精华&积分334&威望0 &金钱-1 &UP值0 &最后登录&
反渗透问题专集
个人收集到的一些反渗透问题
附件: 您所在的用户组无法下载或查看附件
帖子301&精华&积分2191&威望9 &金钱5475 &UP值0 &最后登录&
超滤与低污染反渗透膜在市政废水回用方面的应用
摘要:市政废水回用工程中的膜污染引起人们对废水回用设计和运行的担忧。膜污染是因为在进行二级处理之后,市政废水还含有高浓度的悬浮物、胶体和高水平的生物活性。使用膜技术处理市政废水需要在反渗透系统之前进行非常好的预处理。传统的建立在消毒、絮凝、澄清和介质过滤之上的多级处理步骤,还是对反渗透膜有非常高的潜在污染。大量的现场中试和商业反渗透系统应用结果表明不管膜材料是醋酸纤维素还是复合聚酰胺,污染速度都非常快。为维持设计的产水量,膜必须频繁进行清洗。近来一种新的预处理技术用到了市政废水的反渗透工艺上,它由可反洗的中空纤维结构的微滤和超滤膜组成。这种膜预处理系统能处理二级排放水并能保持稳定的过滤水量和操作压力。中空纤维膜出水中胶体和悬浮物含量比传统的预处理工艺出水低很多。在使用膜预处理的废水回用厂,反渗透膜的污染速度大幅下降。采用低污染复合膜LFC1之后,反渗透膜污染速度下降得更多。在低污染膜中,脱盐层改进为更具亲水性表面并且降低了其对溶解性有机物的亲合力。在市政水回用系统中使用低污染膜的运行结果表明,其污染速度比清洁地下水源的RO系统还低。低污染速度归功于溶解性有机物在LFC1亲水性表面较低的吸附力。很明显在低污染膜中,吸附的溶解性有机物层和膜表面之间的亲合力相对较弱。本文描述低污染膜技术的性能并比较传统和中空纤维膜预处理的不同结果。市政废水回用系统的性能将与传统膜技术进行比较。中空纤维超滤膜预处理市政二级排水并使运行参数最优化的结果也将在本文中细述。
& & 传统预处理
& & 传统处理市政废水的反渗透系统中,膜污染导致透过水量的降低。这表现为需要明显增加压力才能维持设计透水通量。经过二级处理的市政排水含有高浓度的胶体物质、悬浮物和溶解性有机物。二级处理过程通常包括生物处理(活性污泥澄清),导致排水中高水平的生物活性。在进入反渗透系统之前,应降低二级排水中胶体和固体物质并抑制生物活性。传统预处理的一个典型结构如图1,是目前建在洛杉矶桔县21水厂(WF21)的5mgd反渗透系统的三级预处理流程图。目前的预处理工艺是在原始设计基础上发展、改进和简化后的流程(1)。预处理包括絮凝、石灰澄清、用CO2再次碳酸化沉淀和慢速重力过滤。采用加氯法控制生物活性。石灰澄清是提高给水水质非常有效的方法,但是太昂贵,占地面积大且产生难以排放的淤泥。在一些更小的系统中,石灰澄清和重力过滤由在线絮凝取代,然后是二级压力过滤和精密过滤。在21水厂,回用系统主要选择由醋酸纤维素制成的反渗透膜,这种膜在运行期间污染迅速。图2和图3是21水厂醋酸纤维素膜的运行结果。给水压力(图2)最初是200psi左右,在一段时间后不得不升至260psi以维持正常的透水量,在短时期内给水压力又不得不升至300psi以上。给水压力持续上升,即使每2至3星期就清洗一次膜也是如此。但是脱盐率始终稳定在94-96%水平上(图3)。在21水厂进行过大量的现场试验来评估复合膜在废水回用方面的适用性。令人鼓舞的是明显的高水通量、低给水压力、低电能消耗和高脱盐率。超低压复合聚酰胺膜ESPA在21水厂有代表性的运行结果请见图4、5、6。ESPA膜的给水压力初始为60psi,比200psi的醋酸纤维素膜低得多(图4)。然而为维持设计水通量,给水压力也不得不升至300psi以上,这相当于特性水通量下降80%以上。频繁的清洗也没有能够缓和水通量减少的问题。同醋酸纤维膜的运行一样,ESPA的脱盐率稳定在97%左右(图5)。考虑到给水中含有2-6ppm的总氯(以氯胺的形式),这个结果非常突出。RO给水中氯胺的存在似乎控制了生物活性并阻止细菌在RO系统中生长。在运行两年间,膜间压降保持稳定(图6)。快速污染和通量下降等上述结果清楚表明传统的预处理工艺在处理市政排水时不能提供足够好的水质给RO系统。
& & 膜预处理
& & 过去已有使用超滤膜做为RO预处理工艺的绝对屏障(2)。超滤和微滤膜有能力生产出比传统预处理工艺好很多的水质。然而传统的卷式结构超滤膜不适合处理高污染的废水。膜表面没有严重污染和给水通道没有堵塞时,超滤膜也不能在高水通量下运行。高错流给水流速,需要降低浓差极化,从而导致高电量消耗。频繁膜清洗非常繁琐且不能有效恢复透水通量。近来中空纤维结构的新超滤技术开始出现(3)。纤维丝孔内径为0.7-0.9mm,外径为1.3-1.9 mm。商业用中空纤维膜有两个新特性:
& & 1. 纤维丝频繁、短时、自动地进行冲洗(或有些组件反洗),使系统在短期脱机时能保持稳定的透水通量;
& & 2. 能在非常低的错流流速下运行,即使在直流过滤模式时也如此。
& & 相比传统过滤器反洗,中空纤维丝超滤膜脉冲清洗的脱机时间非常短。频繁脉冲清洗的结果是稳定的透水通量。给水压力范围是5-20psi。新预处理方式的主要优势在于膜技术的本质:给水与透水之间膜屏障的存在,使胶体物质与病菌下降几个log值。在市政废水回用应用中,新型可反洗中空纤维膜预处理取代石灰澄清、介质过滤、保安过滤器。二级排水有非常高的污染潜在性,且中空纤维膜技术的应用需要合适的膜种类和运行条件以维持可靠性能。在实地条件下我们发现亲水性聚合物制成的中空纤维丝膜比传统的厌水性材料受溶解性有机物的污染倾向小。但即使是亲水性纤维膜,清洗之间的运行周期也太短,只能持续几天。然而在中空纤维膜系统之前的二级排水中加入絮凝剂,运行周期可以明显延长。图7为海德能HYDRAcap?中空纤维超滤膜在San Luis Rey( Oceanside)废水回用厂的运行结果。该图示有为维持稳定过滤通量所需的压力值。膜组件以直流过滤模式运行,通量为32gfd。最初几天内给水压力急速上升。每3-5天需要进行一次膜清洗。然而,在超滤系统给水中加入氯化铁FeCl3之后,运行周期延长至30天以上。这样明显的性能提高的原因目前还不十分清楚,推测为Fe(OH)3在纤维丝表面形成高透水的多孔弹性层,吸收有机物并吸引胶体物质。在反洗步骤中,此层脱离膜表面并从纤维丝中冲掉。目前实验还在进行以便更清楚此过程原理。中空纤维膜能完全除去胶体,但对TOC的去除率不高。用中空纤维膜进行预处理,在市政排水系统中使用ESPA膜的性能见图 8。初始给水压力约70psi并且迅速增加到140psi,之后稳定下来并且在运行一年半期间随着给水温度的变化而波动。最初透水量衰减约60%,然而明显低于采用传统预处理的同种膜水通量85%的衰减量。使用中空纤维膜做RO系统的预处理使复合膜在废水回用领域得以应用,使之比使用醋酸纤维膜的操作压力更低、脱盐率更高。
& & 低污染反渗透膜
& & 相比传统的复合聚酰胺膜 ,最近推出的低污染复合膜LFC1,具有亲水性膜 表面且膜表面不带电荷。亲水性表面降低了给水中有机物质在膜表面的吸附。LFC1膜在21水厂和San Pasqual 水处理设备厂,以中空纤维膜做预处理,处理市政排水。在San Pasqual的运行结果见图9。LFC1膜的特性水通量小于ESPA的特性水通量。因此,初始压力约为90psi,稍高于同样运行条件下ESPA膜的操作压力。然而在运行期间压力始终保持稳定,水通量在12gfd。在运行后期水通量逐步升到17 gfd,这样的水通量对于废水处理系统来说是非常高的,因为废水反渗透系统通常设计的平均水通量为10gfd。图10为特性水通量的计算值。结果表明在初期下降约15%后,特性水通量在运行期内一直保持稳定。由于膜性能的稳定性,在这八个月的运行期内,膜元件没有进行清洗。在运行期结束后,LFC1膜在标准测试条件下进行了一次测试,结果概括在表1中。相比于厂外的测试数据,八个月运行后的平均水通量下降约为10%。由0.5%NaOH溶液循环的清洗步骤可使水通量完全恢复。
表1 San Pasqua厂经超滤膜预处理的LFC1膜运行性能变化图 运行期:月 测试运行时的位置厂外运行后清洗后 脱盐率透水量gpd 脱盐率 透水量gpd脱盐率透水量gpd第1列
首支元件99.5162999.61512没清洗没清洗中间元件99.5162999.6146699.41788末支元件99.5168499.6149999.41788
平均99.5164799.6149299.41788变化%
+20-9.4+20+8.5
首支元件99.6190899.51629没清洗没清洗中间元件99.6190899.6159699.22317末支元件99.6208299.6157899.21708
平均99.6196699.6160199.22012变化%
0.0-18.5+100+2.3平均变化%
+10-14+60+5& & 膜完整性
& & 在废水回收系统中,膜的完整性和膜去除病菌的能力非常重要。卷式反渗透膜的完整性可以通过真空试验检测,传统的卷式膜只能在膜元件装入反渗透系统前进行此类检测。中空纤维超滤膜和微滤膜可以在组件装入系统中之后进行完整性检测。最普遍的完整性检测是压力保持试验:向系统施压并监测压力损失。在此类研究中,系统的完整性由超滤膜与微滤膜对MS2病菌的脱除率确定。试验结果见图11和图12。结果表明每套膜系统可以脱除5log的细菌。
& & 商业应用
& & 使用LFC膜最大商用系统为新加坡Bedok废水回用厂,Bedok厂于2000年4月起开始运行。给水是二级市政排水,由纤维微滤系统进行预处理。阻垢剂和硫酸加在微滤系统的出水处,给水PH保持在6左右。反渗透系统包括两套出力为5000吨/天的系统,设计通量为18.7l/m2-hr(11gfd)。反渗透设计为28:14:8三段排列,每支压力容器中装6支元件,设计回收率是85%。在运行初期反渗透第三段出现结垢现象,主要是磷酸钙垢,采用柠檬酸清洗后性能恢复。结垢的原因主要是阻垢剂不适用,在更换阻垢剂后系统实现稳定可靠运行。即使给水源自市政排水,LFC膜系统的给水压力一直很稳定,维持在设计的8—10bar(116-145psi)范围内,没有压降增加的现象。生物活性由反渗透系统给水中保持约2ppm的余氯进行控制。尽管给水中有余氯存在,LFC的脱盐率非常稳定并且高于设计值。
& & 废水回收系统中的膜污染与给水水质和膜材质有关。结果表明两种污染成分:胶体和溶解性有机物在膜表面沉积构成污染层。此污染过程称为混合污染(4),主要影响透水性。表2概括因采用不同预处理的不同膜元件污染引起的透水通量的下降。由表2可以明显看出,采用超滤膜进行预处理后,反渗透膜的污染速度下降。采用膜预处理的主要结果是给水中的粒子减少。微滤和超滤处理很少改变给水中的有机物质浓度。自然有机物非常容易吸附在厌水性膜材质上(5,6,7),很大程度上是有机物的吸附导致采用膜预处理的废水系统中复合膜的通量下降。亲水性膜材质很少吸附有机物(5),通量损失也很低,所以亲水性膜可以在较高水通量下运行。废水回收系统中的污染过程不会导致透膜压降的明显增加,这是因为给水中的余氯明显降低生物活性。使用膜预处理提供进一步的屏障,降低了反渗透给水中的细菌量。采用LFC膜处理市政废水的设计观念,通过中试系统研究和开发,在大型商业反渗透系统中得以成功应用。给水压力和脱盐率等性能保持了长期稳定。生物活性,通常是废水回收应用中的主要问题,通过余氯的存在得以控制。
表2不同反渗透膜在特定水通量下的预处理结果 膜种类醋酸纤维素膜ESPA1(聚酰胺)ESPA1(聚酰胺)LFC1(低污染)预处理方式传统传统中空纤维膜中空纤维膜特性水通量, 初期0.07gfd/psi0.24 gfd/psi0.24 gfd/psi0.17 gfd/psi特性水通量,稳定后0.04 gfd/psi0.04 gfd/psi0.10 gfd/psi0.15 gfd/psi通量下降40%85%60%12%操作压力,给水压力在
10gfd/psi(bar)200-350(14-24)300-350(20-24)140-180(10-13)100-150(7-11)电能消耗 kwhr/m35.0-6.05.0-6.02.5-3.21.7-2.7
帖子301&精华&积分2191&威望9 &金钱5475 &UP值0 &最后登录&
反渗透膜分离技术发展及污水处理中应用
近来,物理化学处理技术、光照射技术及膜过滤技术已形成三大水处理技术。在这些技术中引人注目的是膜分离法污水处理技术[1]。膜分离是通过膜对混合物中各组分的选择渗透作用的差异,以外界能量或化学位差为推动力对双组分或多组分混合物的气体或液体进行分离、分级、提纯和富集的方法。而反渗透膜分离技术作为当今世界水处理先进的技术,具有清洁、高效、无污染等优点,已在海水淡化、城市给水处理、纯水和超纯水制备、城市污水处理及利用、工业废水处理、放射性废水处理等方面得到广泛的应用。& & 膜分离技术作为新的分离净化和浓缩方法,与传统分离操作(如蒸发、萃取、沉淀、混凝和离子交换树脂等)相比较,过程中大多无相变化,可以在常温下操作,具有能耗低、效率高、工艺简单、投资小等特点。膜分离技术应用到污水处理领域,形成了新的污水处理方法,它包含微滤(MF)、超滤(UF)、渗析(D)、电渗析(ED)、纳滤(NF)、和反渗透(RO)等,本文仅对反渗透(RO)膜法对城市污水处理技术进行探讨。
& & 1 反渗透膜发展概况
& & 膜广泛的存在于自然界中,特别是生物体内。人类对于膜现象的研究源于1748年,但是人类对它的认识和研究则较晚。1748年,Abbe Nollet观察到水可以通过覆盖在装有酒精溶液瓶口的猪膀肌进入瓶中时,发现了渗透现象。然而认识到膜的功能并用于为人类服务,却经历了200多年的漫长过程。人们对膜进行科学研究则是近几十年来的事。其发展的历史大致为;30年代微孔过滤;40年代透析;50年代电渗析;60年代反渗透;70年代超滤和液膜;80年代气体分离;90年代渗透汽化[2]。
& & 在国外,其发展概况为:1953年美国的Reid 提出从海水和苦盐水中获得廉价的淡水的反渗透研究方案,1960年美国的Sourirajan 和Leob 教授研制出新的不对称膜,从此RO作为经济的淡化技术进入了实用和装置的研究阶段。20世纪70年代初期开始用RO法处理电镀污水,首先用于镀镍污水的回收处理,此后又应用于处理镀铬、镀铜、镀锌等漂洗水以及混合电镀污水。1965年英国首先发表了用半透膜处理电泳涂料污水的专利。此后美国P.P.G公司提出用UF和RO的组合技术处理电泳涂料污水,并且实现了工业化。年J J .Porter 等人用动态膜进行染色污水处理和再利用实验。1983年L.Tinghuis等人发表了用RO法处理染料溶液的研究结果。1969年美国的J . C. V Smith 首先报道了处理城市污水的方法。30年来,反渗透(RO)技术先后在含油、脱脂废水、纤维工业废水、造纸工业废水、放射性废水等工业水处理、苦咸水淡化、纯水和高纯水制备、医药工业和特殊的化工过程和高层建筑废水等各类污水处理中得到了广泛的应用。尤其是近几年,一些新型的膜法污水处理技术逐一问世,如膜蒸馏、液膜、膜生化反应器、控制释放膜、膜分相、膜萃取等[3]。
& & 在我国,膜技术的发展是从1958年离子交换膜研究开始的。1958年开始进行离子交换膜的研究,并对电渗析法淡化海水展开了试验研究;1965年开始对反渗透膜进行探索,1966年上海化工厂聚乙烯异相离子交换膜正式投产,为电渗析工业应用奠定了基础。1967年海水淡化会战对我国膜科学技术的进步起了积极的推动作用。1970年代相继对电渗析、反渗透、超滤和微滤膜及组件进行研究开发,1980年代进入推广应用阶段。1980年代中期我国气体分离膜的研究取得长足进步,1985年中国科学院大连化物所,首次研制成功中空纤维N2/H2分离器,主要性能指标接近国外同类产品指标,现己投入批量生产,每套成本仅为进口装置的1/3。进入90年代以来,复合膜的制备取得了较大进展[2]。
& & 2 反渗透膜分离技术基本理论
反渗透膜分离法的基本特点是其推动力为压力差(1-10MPa),传质机理一般认为是溶剂的扩散传递,透过膜的物质是水溶剂,截留物为溶质、盐(悬浮物、大分子、离子),膜的类型为非对称膜或复合膜。反渗透的选择透过性与组分在膜的溶解、吸附和扩散有关,因此除与膜孔大小结构有关外,还与膜的化学、物理性质有密切关系,即与组分和膜之间的相互作用密切相关[4]。
& & 2.1 反渗透原理
& & 渗透现象早在1748年已由Abbe Nollet首次得到证明,直到20世纪50年代,科学家们才开始利用反渗透或超滤作为溶液中溶质和溶剂的有效分离方法,并使其成为一种实验室技术。
& & 渗透是指一种溶剂(即水)通过一种半透膜进入一种溶液或是从一种稀溶液向一种比较浓的溶液的自然渗透。但是在浓溶液一边加上适当的压力,即可使渗透停止,此时的压力称为该溶液的渗透压。若在浓溶液一边加上比自然渗透压更高的压力,扭转自然渗透方向,把浓溶液中的溶剂(水)压到半透膜的另一边稀溶液中,这是和自然界正常渗透过程相反的,此时就称为反渗透。
& & 这就说明,当对盐水一侧施加的压力超过水的渗透压时,可以利用半透膜装置从盐水中获取淡水。因此,反渗透过程必须具备两个条件:一是必须有一种高选择性和高渗透性(一般指透水性)的选择性半透膜,二是操作压力必须高于溶液的渗透压。
& & 2.2 反渗透膜的透过机理
& & 关于反渗透膜的透过机理,自20世纪50年代末以来,许多学者先后提出了各种不对称反渗透膜的透过机理和模型,现介绍如下:
& & 2.2.1 氢键理论[3]
& & 这个理论是由里德(Ried)等人提出的,并用醋酸纤维膜加以解释。这种理论是基于一些离子和分子能通过膜的氢键的结合而发生联系,从而通过这些联系发生线形排列型的扩散来进行传递。在压力的作用下,溶液中的水分子和醋酸纤维素的活化点——羰基上氧原子形成氢键,而原来的水分子形成的氢键被断开,水分子解离出来并随之转移到下一个活化点,并形成新的氢键,如是通过这一连串氢键的形成与断开,使水分子离开膜表面的致密活化层,由于多孔层含有大量的毛细管水,水分子能畅通流出膜外。
& & 2.2.2 优先吸附-毛细孔流理论[4]
& & 索里拉金等人提出了优先吸附-毛细孔流理论。他们以氯化钠水溶液为例,溶质是氯化钠,溶剂是水,膜的表面能选择性吸水,因此水被优先吸附在膜表面上,而对氯化钠排斥。在压力作用下,优先吸附的水通过膜,就形成了脱盐的过程。这种模型同时给出了混合物分离和渗透性的一种临界孔径的概念。临界孔径显然是选择性吸着界面水层的两倍。基于这种模型在膜的表面必须有相应大小的毛细孔,根据这种理论,索里拉金等研制出具有高脱盐率、高脱水性的实用反渗透膜,奠定了实用反渗透膜的发展基础。
& & 2.2.3 溶液扩散理论[3]
& & 朗斯代尔(Lonsdale)和赖利(Riley)等人提出溶解扩散理论。该理论假定膜是无缺陷的“完整的膜”,溶剂和溶质透过膜的机理是由于溶剂与溶质在膜中的溶解,然后在化学位差的推动力下,从膜的一侧向另一侧进行扩散,直至透过膜。溶剂和溶质在膜中的扩散服从(Fick)定律,这种模型认为溶剂和溶质都可能溶于均质或非多孔型膜表面,以化学位差为推动力(常用浓度差或压力差来表示),分子扩散使它们从膜中传递到膜下部。因此,物质的渗透能力不仅取决于扩散系数,而且取决于其在膜中的溶解度。溶质的扩散系数比水分子的扩散系数小得越多,高压下水在膜内的移动速度就越快,因而透过膜的水分子数量就比通过扩散而透过去的溶质数量更多。
& & 目前一般认为,溶解扩散理论较好的说明膜透过现象,当然氢键理论、优先吸附-毛细孔流理论也能够对反渗透膜的透过机理进行解释。此外还有学者提出扩散-细孔流理论,结合水-空穴有序理论以及自由体积理论等。也有人根据反渗透现象是一种膜透过现象,因此把它当作非可逆热力学现象来对待。总之,反渗透膜透过机理还在发展和完善中。
& & 2.3有机物去除机理
& & 对于有机溶质的脱除机理最初认为纯属筛网效应其脱除率主子量大小和形状有关。后来经过大量的研究,发现膜与有机溶质的电荷斥力对脱除率的影响有时不容忽视。近年来的研究证明,膜对有机溶质的脱除主要受两方面的影响:一是膜孔径的机械筛除作用;二是膜与有机物间排斥力的作用,这种排斥作用的大小与膜材料和有机物的物理化学特征参数有很大的关系。这些物理比学特征参数及其对分离度的影响(不考虑膜孔径的机械筛除作用)介绍如下[5]。
& & 2.3.1 极性参数[5]
& & 极性效应表征的是有关分子的酸性或碱性。以下参数中的任何一个均可以给出极性效应以定量的量度。
& & (1)△Ms(酸性)或△Ms(碱性)
& & △Ms(酸性)是溶质(ROH)在CC14和醚溶液中测得的红外光谱中OH谱带最大值的相对位移,△Ms(碱性)是溶质(CH3OD)在苯中测得的红外光谱中OD谱带最大值的相对位移△Ms(酸性)或△Ms(碱性)的数据分别与质子给予体或质子接受体的分子的相对氢键键合能力相联系。氢键键合能力愈大,表示一种酸(如醇或酚)给予质子的能力愈大或一种碱(如醛、酮)接受质子的能力愈大。由于质子给予能力与质子接受能力表现出相反的趋势,因此△Ms(酸性)的增加值等于△Ms(碱性)的减小值。
& & 一般来说,有机溶质的△Ms(酸性)增加,表示有关分子与膜的氢键键合能力增强,这种增强的结果就会减小膜与有机溶质间的排斥力。因此,随着△Ms(酸性)的增加,有机物的分离度减小。或者说,随着△Ms(碱性)的增加,有机溶质与膜的氢键键合能力减小,因此膜与有机溶质间的排斥力增大,有机物的分离度增加。但当△Ms(碱性)值超过随某一化合物的种类而异的值时,随着△Ms(碱性)的增加,溶质分离度的增加甚微。& & (2)解离常数Ka或pKa (PK=-logKa )& & 解离常数是水溶液中具有一定离解度的溶质的的极性参数。离解常数给予分子的酸性或碱性以定量的量度,pKa减小,对于质子给予体来说,其酸性增加;对于质子接受体来说,其碱性增加。& & 对于酸性有机物来说,随着pKa的减小,一方面,有机溶质与膜的氢键键合能力增强,相当于溶质与膜间的吸引力增加,因而分离度下降;另一方面,它离解成为离子的倾向增加,相当于增强了该有机物与膜之间的静电斥力,从而分离度升高。上述两种作用的相伴相克,起主导作用的因素决定着分离度高低的走向。因此,对于酸性分子来说,酸性的大小和pKa共同影响着溶质分离度。与酸性有机物有所不同,对于碱性有机溶质来说,随着pKa的减小,有机溶质与膜间的静电斥力增加,去除率升高。& & (3)Hammet数或Taft数
& & Hammet数σ是表示芳香族间位或对位取代基的极性常数,Taft数σ*是表示芳香族邻位化合物或脂肪族化合物中取代基的极性常数。σ和σ*两者定量表示取代基对有机分子的极性效应的影响;σ和σ*具有加和性;取代基的σ和σ*值愈低,它的电子收回能力(或质子给予能力)愈小。因此对一给定的官能团,σ和σ*值的降低相当于分子的酸性降低或碱性增加。
& & 一般来说,无论是酸还是碱,有机溶质的分离度随着σ和σ*值的减小而增加。& & 2.3.2 位阻参数(Es)
& & Es是表示有机物原子之间或原子与官能团之间相互排斥力的常数,ΣEs为所有官能团的Es之和。ΣEs减小,表明有机溶质的位阻障碍增大,因而去除率增加。ΣEs正常用来表示对醚的分离度的影响。ΣEs降低,溶质的分离度趋于增加。& & 2.3.3 非极性参数(Small数或修正Small数)[6]
& & Small数S是表示非极性有机分子间凝聚力的常数,又称摩尔吸引常数:修正Small数(ΣS*)是表示非极性有机分子疏水程度相对大小的常数,它是松蒲和Souriragan等利用溶质的溶解度数据对凝聚力进行修正后而得到的,故称修正Small数。Small数或修正Small数常用来表示对碳氢化合物分离度的影响。碳氢化合物的的溶解度越高,修正Small数越小。& & 溶质的Small数或修正Small数增大,意味着疏水或非极性增强。松蒲等人通过大量的研究发现,对于同一张膜来说,ΣS*值增加,溶质的分离度趋于增加。& & 2.4无机物去除机理
& & 关于反渗透膜去除无机物的原理有多种理沦,现将几种主要的介绍如下[6]。
& & 2.4.1 Scatchafd理论
& & 该理论认为溶质的分离与膜及溶液的介电常数有关,荷电离子在不同介电常数的介质中具有不同的离子浓度,介电常数越低,该离子浓度也越低。这里把溶液和膜分别记作为I相和II相,相应的介电常数分别为和II,并以“膜一溶液”两相界面(记作I-)作为计算距离的基准。离子浓度是距离的函数,因为&1I,所以在液相中,距离I-界面越远,离子浓度越高;在膜中,距离I-II界面越远,离子浓度越低。
& & Scatchard认为,膜与溶液的介电常数差别越大,或者说膜的介电常数越小溶液的介电常数越大,则离子在膜表面处及膜内的渡度越小。膜内离子浓度越低,膜对溶质的去除率越高。因此,为了提高膜的分离性能,应选择介电常数较低的膜材料。Scatchafd还发现,溶液的浓度越高,膜的去除率越低。
& & 2.4.2 Gluckauf理论
& & Gluckauf认为膜存在着细孔,细孔半径为r,如图6-2所示。由于膜与溶液的介电常数不同, 离子从溶液中进入膜内需要一定的能氢E):
式中,4为离子电荷;是与Debye -Huckel模型中的离子半径( 1/Kρ)和膜孔径有关的常数,
为离子半径。孔中B处离子浓度(C孔)服从Boltzmann分布; C孔=Cexp(-E/(Kρ))式中,kc为Boltzmann常数;T为溶液的温度。
& & 对比可得:
由上式可以看出,溶质的去除率与膜的孔径、膜的介电常数、离子的水化体积、离子所带的电荷、离子的浓度以及溶液的温度有关。
& & 2.4.3 Bean理论
& & Bean在Gluckauf理论的基础上,利用Parsegian的研究成果计算得到去除率R为;
式中,μ为细孔内溶液的粘度;D为水中溶质的扩散系数。
& & 由上式可以看出,溶质的去除率与操作压力及膜孔径有关。
& & 2.4.4离子与溶剂的相互作用
& & 松浦等人为了研究离子与溶剂的相互作用对膜透过性能的影响,提出了的△△G概念。△△G是离子从主体溶液进入Ⅰ-Ⅱ相界面所需要的自由焙差。即
△△G=△Gr-△GB& & 式中,△△G为Ⅰ-Ⅱ相界面处离子与溶剂相互作用的自由烙差,由离子水化自由烩△GB为主体溶液中离子与溶剂相互作用自由焙差,由反渗透实验数据推算。
& & △△G &0,表明离子从主体溶液迁移至膜表面为反自发过程,即膜排斥该离子;反之△△G & 0,则离子从主体溶液迁移至膜表面为自发过程,即膜吸引该离子。
& & 松浦等人根据醋酸纤维素膜对各电解质分离的实验结果和离子的水化自由焙,求出了离子的△△G。发现有如下规律;
& & (1) 阳离子的G为负值,阴离子的G为正值。这表明膜吸引阳离子而排斥阴离子,可以推测醋酸纤维素膜呈负电性。
& & (2) 1价阳离子的G比2价阳离子的G更负,这预示着1价阳离子的分离效果比2价阳离子的差。
& & (3) 对于卤素离子,随着离子半径增加G下降,因而去除率随离子半径增大而下降。
& & 3 反渗透膜及膜装置类型
& & 3.1 反渗透膜类型
& & 一般来说,反渗透膜应具备以下性能:
& & ①单位面积上透水量大,脱盐率高;
& & ②机械强度好,多孔支撑层的压实作用小;
& & ③化学稳定性好,耐酸、碱腐蚀和微生物侵蚀;
& & ④结构均匀,使用寿命长,性能衰降慢;
& & ⑤制膜容易,价格便宜,原料充足。
& & 影响膜性能因素[7]:
& & ①回收率/转变率;
& & ③压力;
& & ④压密;
& & ⑤浓差极化。
& & 据此,目前较常用的膜类型有:
& & ①醋酸纤维膜(CA膜)
& & CA膜又可以分为平膜、管式膜和中空纤维膜几类。CA膜具有反渗透膜所需的三个基本性质:高透水性、对大多数水溶性组分的渗透性相当低、具有良好的成膜性能。
& & ②聚酰胺膜(PA膜)
& & 聚酰胺膜又可以分为脂肪族聚酰胺膜、芳香聚酰胺膜(成膜材料为芳香聚酰胺、芳香聚酰胺-酰肼以及一些含氮芳香聚合物)
& & ③复合膜
& & 这是近些年来开发的一种新型反渗透膜,它是由很薄的而且致密的符合层与高空隙率的基膜复合而成的,它的膜通量在相同的条件下比非对称膜高约50%-100%。目前复合膜有以下几种:
& & a.交联芳香族聚酰胺复合膜(PA);
& & b.丙烯-烷基聚酰胺和缩合尿素复合膜;
& & c.聚哌嗪酰胺复合膜;
& & d.氧化锆-聚丙烯酸复合膜。
& & 3.2反渗透装置型式
& & 3.2.1 板框式反渗透装置
& & 这种形式的装置由Aerojet通用公司发展起来的,教适合于小的和低压工厂。膜支撑体在一种圆形平板上,这块平板称为多孔板,常见的有不锈钢多孔板和聚氯乙烯多孔板,产水通过多孔板汇集起来。这种装置存在以下缺点:①安装和维护费用高,②进料分布不均匀,③流槽窄,④多级膜装卸复杂,⑤单位体积中膜的比表面积低,产水量少。
& & 尽管有这些缺点,但由于它的结构简单可靠,体积比管式装置小,在小规模的生产场所还是有一定的优势的。
& & 3.2.2 管式反渗透装置
& & 这种装置在实际应用中是很有意义的。它能够处理含悬浮颗粒和溶解性物质的液体,像沉淀一样在管式装置中把料液进行浓缩,运行期间系统处处都可以保持良好的排水作用,适当调节水力条件,常常可以预防溶液的浓缩弄脏或堵塞膜。其主要优缺点可以归纳如下:
& & 优点:①能够处理含悬浮固体的溶液,②合适的流动状态就可以防止浓差极化和膜污染等,并容易调整。
& & 缺点:①设备端部用膜较多,装置制造和安装费用较昂贵。②单位体积中膜的比表面积小。③必须把管子外部包起来。④要使用支撑材料
& & 3.2.3 螺旋式反渗透装置
& & 美国通用原子公司(Gulf General Atomic Co)发展了这种装置。这种螺旋式结构的中间为多孔支撑材料,两边是膜的“双层结构”,它的末端是冲孔的塑料管。双层膜的边缘与多孔支撑材料密封形成一个膜袋(收集产水),在膜袋之间再铺上一层隔网,然后沿中心管卷绕这种多层材料(膜/多孔支撑材料/膜/料液隔网),就形成了一个螺旋式反渗透组件。将卷好的螺旋式组件,放入压力容器中,就成为完整的螺旋式反渗透装置。使用这种螺旋式反渗透装置时应注意:①中心管主要褶皱处的泄露②膜及支撑材料在粘结线上发生皱纹③胶线太厚可能会产生张力或压力不均匀④支撑材料的移动会使膜的支撑不合理,导致平衡线移动⑤膜上有小孔洞,这是由于膜的质量不合格所致。
& & 目前,美国制作螺旋式组件已实现机械化,采用一种0.91m滚压机,连续喷胶将膜与支撑材料粘密封结在一起,并滚转成螺旋式组件,牢固后不必打开即可使用。
& & 螺旋式组件的主要优缺点是:
& & 优点:①单位体积中膜的表面积比率大②压力导管的设计简单,具有扰性,安装和更换容易,结构可以紧密放在一起。
& & 缺点:①料液含悬浮固体时不适宜②料液流动路线短③压力消耗高④再循环浓缩困难。
& & 3.2.4 中空纤维式反渗透装置
& & 美国杜邦公司和道斯化学公司提出用纯中空纤维素作为反渗透膜,制造出中空纤维式反渗透装置。这种装置类似于一端封死的热交换器,其中含有外径50μm、内径25μm;装成一种圆柱形耐压容器中,或是将中空纤维弯成U形装入耐压容器中,由于这种中空纤维极细,通常可以装填几百万根。高压溶液从容器旁打进去,经过中空纤维膜的外壁,从中空纤维管束的另一端把渗透液收集起来,浓缩后的料液从另一端连续排掉。
& & 中空纤维式反渗透装置的主要优缺点如下:
& & 优点:①单位体积中膜的表面积比率高,一般可达到1m2/m3,因此组件可以小型化;②膜不需支撑材料,中空纤维本身可以受压而不破裂。
& & 缺点:①膜表面去污困难,料液需经严格预处理;②中空纤维膜一旦损坏是无法更换的。
& & 由此我们可以给优质反渗透装置作出以下要求:
① 对膜能提供合适的支撑
② 处理溶液在整个膜面上必须均匀分布
③ 在最小能耗情况下,对处理溶液提供良好的流动状态
④ 单位体积中膜的有效面积比率高
⑤ 组件容易拆卸和更换
⑥ 便于膜的拆卸和组装
⑦ 在运行压力下,有效的工作时安全与可靠性高
⑧ 外部泄露能尽可能从压力的变化上发现
⑨ 建造、维护费用都是方便的。
目前流行的这四种装置的一些主要特性比较见表3-1
表3-1&&四种反渗透装置的主要特性比较种 类膜装填密度m2/m3操作压力MPa透水量m3/m2*d单位体积产水量m3/m3*d板框式 管 式
中空纤维式493 330
注:原料液为500mg/L NaCl,脱盐率为92%-96%
4 反渗透膜的主要性能参数与运行工况条件
4.1 反渗透的主要性能参数[8]
1) 透水率。是指单位时间透过单位膜面积的水量。主要取决于膜的材质和结构等因素,但一定的反渗透膜其透水率则取决于运行条件;a. 透水率随温度的升高而增加,随工作压力的增加成比例的上升;b. 透水率随进水浓度的增加而下降;c. 透水率随回收率的增加而下降。2) 回收率。即供水对渗透液的转换率,直接影响除盐系统的成本。对于苦盐水的回收率大约为90 %;高苦盐水降为60 %-65 %;工业海水系统回收率是35 %-45 %。3) 膜通量。是表明通过膜表面的一个特定区域的水流速度。对于地表水是8 GFD-14 GFD(13 L/ m3·h-23 L/ m3·h) ;经过反渗透出水是14 GFD-18 GFD(23 L/ m3·h-30 L/ m3·h) ;对于海水为7 GFD-8 GFD。4.2 反渗透装置的运行工况条件[8]
为了确保反渗透装置安全可靠运行,选择一定适宜的工况条件是非常必要的。反渗透装置的主要工况条件为进水pH值、进水温度与运行压力。1) 进水pH 值。对于醋酸纤维膜运行时,水以偏酸性为宜,pH值一般控制在4~7之间,在此范围外加速膜的水解与老化。目前认为pH值在5-6 之间最佳。膜的水解不仅会引起产水量的减少,而且会造成膜对盐去除能力的持续性降低,直至膜损坏为止。2) 进水温度对产水量有一定的影响,温度增加1 ℃,膜的透水能力增加约2.7 %。反渗透膜的进水温度底限为5℃-8℃,此时的渗滤速率很慢。当温度从11℃升至25℃时,产水量提高50 %。但当温度高于30℃时,大多数膜变得不稳定,加速水解的速度。一般醋酸纤维膜运行与保管的最高温度为35℃,宜控制在25℃-35℃之间。3) 运行压力。渗透压与原水中的含盐量成正比,与膜无关。提高运行压力后,膜被压密实,盐透过率会减少,水的透过率会增加,提高水的回收率。但当压力超过一定限度时会造成膜的老化,膜的变形加剧,透水能力下降。4.3 影响反渗透运行参数的主要因素[9]
膜的水通量和脱盐率是反渗透过程中关键的运行参数,这两个参数将受到压力、温度、回收率、给水含盐量、给水PH值因素的影响。(1)压力给水压力升高使膜的水通量增大,压力升高并不影响盐透过量。在盐透过量不变的情况下,水通量增大时产品水含盐量下降,脱盐率提高了。(2)温度温度对反渗透的运行压力、脱盐率、压降影响最为明显。温度上升,渗透性能增加,在一定水通量下要求的净推动力减少,因此实际运行压力降低。同时溶质透过速率也随温度的升高而增加,盐透过量增加,直接表现为产品水电导率升高。温度对反渗透各段的压降也有一定的影响,温度升高,水的粘度降低,压降减少,对于膜的通道由于污堵而使湍流程度增强的装置,粘度对压降的影响更为明显。(3)回收率回收率对各段压降有很大的影响,在进水总流量保持一定的条件下,回收率增加,由于流经反渗透高压侧的浓水流量减少,总压降降低,回收率减少,总压降增大,实际运行表明,回收率即使变化很小,如1%,也会使总压差产生0. 02MPa左右的变化。回收率对产品水电导率的影响取决于盐透过量和产品水量,一般说来,系统回收率增大,会增加浓水中的含盐量,并相应增加产品水的电导率。(4)进水含盐量对同一系统来说,给水含盐量不同,其运行压力和产品水电导率也有差别,给水含盐量每增加l00ppm,进水压力需增加约0.007MPa,同时由于浓度的增加,产品水电导率也相应的增加。(5)pH值各种膜组件都有一个允许的pH值范围,即使在允许范围内,pH值对产品水的电导率也有一定的影响,这是因为反渗透膜本身大都带有一些活性基团,pH值可以影响膜表面的电场进而影响到离子的迁移,另一方面pH值对进水中杂质的形态有直接影响,如对可离解的有机物,其截留率随pH值的降低而下降。5 反渗透的流程
反渗透的流程是由反渗透的设计依据确定的。
5.1 反渗透的流程的设计依据
RO过程应视为一个总的系统,它包含各组成部分及依据。这些依据可作为设计RO系统时的入门指南。每一部分与每一交接处都将有合宜的操纵开关及连接,以保证系统的长期使用性能即可靠性。每一部分及每一系统均有可考虑满足各个用户需要的经济/性能的折中办法。我们沿与流程相反的方向来讨论:
①最终用途:首先的考虑是产品水的具体用途,它决定了为满足用户需要的水质和水量。对饮用水,通常要求满足公共卫生标准或世界卫生组织标准。对超纯电子工业用水,水电阻率需达18MΩcm。然而产品的性能并不严格的要超过所需值,因为高于所需的产水量或产水水质将增加产品水的费用,产生明显的负面影响。
②后处理:在RO透过液使用前,通常需要对其作些后处理。至少,需要脱气以去除为控制结垢对进料水酸化而产生的CO2和进行pH调节,以防止下游系统发生腐蚀。后处理的要求取决于应用,需按具体情况加以确定。对许多工业应用,后处理包括采用树脂除盐和紫外线消毒。对城市应用要附加pH调节、脱气及用氯消毒。
③膜:膜为系统的心脏,其性能可受与膜本身及其构型无关的一些因素的影响,例如预处理及系统的操作与维护,然而,需根据进料水的水质及最终用途仔细考虑选择膜材料及膜构型。
④操作与维护:操作与维护是成功的系统性能的关键。为了尽早的发现潜隐的问题,须收集系统性能数据并定期分析。若发生了问题,应该采用合宜的寻找故障的技术,并与膜制造商和/或系统设计者切磋商量合宜的消除问题的措施。对不能控制的结垢、污染或堵塞,则需经常清洗膜以保持膜的性能。在膜装置中,这些物质不可逆的积累将导致流体分布不均和产生浓差极化,这将造成膜通量与盐截留率的减退,有时会使膜材料发生降解。这些导致了昂贵的膜单元的更换。已开发出的用于恢复因结垢或污染造成的不良的膜性能的技术,若能及早的识别出膜需清洗,则这些技术是非常有效的。清晰剂可用以从膜装置中将微粒、胶体、生物和有机物移出。通常的做法是将清洗液按正向流动,低压下通过膜装置进行循环,直至污染物被去除。很少推荐进行反洗。
⑤高压泵:高压泵提供膜生产所需产水流量及水质的压力。常用泵的类型是单级、高速离心泵;柱塞泵;多级离心泵。通常单级离心泵效率最低,柱塞泵效率最高。对于小系统采用高速离心泵,对于大系统采用多级离心泵为佳。
⑥预处理:预处理即垢的控制,方法有pH值的调节、缓蚀剂软化、微生物控制、氯化/脱氯,对悬浮固体、胶体、金属氧化物、有机物等的去除。
5.2 预处理过程
总的来讲反渗透系统是由预处理过程和膜分离过程组成的。
预处理过程是指被处理的料液在进入膜分离过程前需采用的预先处理措施。预处理一般有物理处理、化学处理和光化学处理三种。在预处理过程中可使用各种单元操作,也可以将几种方法组合使用,预处理过程的好坏是反渗透膜的分离过程成败的关键,因此必须严格认真的做好预处理工作。
目前流行的方法主要有以下几种:
(1)物理法
物理方法包括①沉淀法或气浮分离法,②砂过滤、预涂层(助滤剂)过滤、滤筒过滤、精过滤等,③活性炭吸附法,④冷却或加热。
(2)化学法
化学方法包括①氧化法:利用臭氧、空气、氧、氯等氧化剂进行氧化,②还原法,③pH值调节法
(3)光化学法
光化学预处理方法主要指紫外线照射。
采用哪一种预处理方法,不仅取决于料液的物理、化学和生物学性质,而且还要根据在膜分离过程中所用组件的类型构造作出判断。实际运行中的故障,一方面是由于膜表面上的分离所带来的直接污染;另一方面与膜组件本身的构造有关。预处理所需要达到的标准,根据所用的膜件的不同也不一致。
5.3 反渗透膜分离常见的流程
反渗透膜分离工艺设计中常见的流程有如下几种:
①一级一段法
这种方式是料液进入膜组件后,浓缩液和产水被连续引出,这种方式水的回收率不高,工业应用较少。另一种形式是一级一段循环式工艺,它是将浓水一部分返回料液槽,这样浓溶液的浓度不断提高,因此产水量大,但产水水质下降。
②一级多段法
当用反渗透作为浓缩过程时,一次浓缩达不到要求时,可以采用这种多步式方式,这种方式浓缩液体体积可减少而浓度提高,产水量相应加大。
③两级一段法
当海水除盐率要求把NaCl从35000 mg/L降至500mg/L时,则要求除盐率高达98.6%如一级达不到时,可分为两步进行。即第一步先除去NaCl 90%,而第二步再从第一步出水中去除NaCl 89%,即可达到要求。如果膜的除盐率低,而水的渗透性又高时,采用两步法比较经济,同时在低压低浓度下运行时,可提高膜的使用寿命。
④多级反渗透流程
在此流程中,将第一级浓缩液作为第二级的供料液,而第二级浓缩液再作为下一级的供料液,此时由于各级透过水都向体外直接排出,所以随着级数增加水的回收率上升,浓缩液体体积减少浓度上升。为了保证液体的一定流速,同时控制浓差极化,膜组件数目应逐渐减少。
当然,在选择流程时,对装置的整体寿命、设备费、维护管理、技术可靠性也必须考虑。例如,需将高压一级流程改为两级时,那么就有可能在低压下运行,因而对膜、装置、密封、水泵等方面均有益处。
6 反渗透技术在城市污水的应用
反渗透技术是20世纪60年代初发展起来的以压力为驱动力的膜分离技术。该技术是从海水、苦咸水淡化而发展起来的,通常称为“淡化技术”。由于反渗透技术具有无相变、组件化、流程简单、操作方便、占地面积小、投资省、耗电低等优点,因此在水处理中得到了大量的运用。目前反渗透技术已广泛应用于海水苦咸水淡化,纯水、超纯水制备,化工分离、浓缩、提纯等领域。工程遍布电力、电子、化工、轻工、煤炭、环保、医药、食品等行业。
6.1 在美国反渗透法生活污水处理[1]
在美国,反渗透法曾作为生活污水是一种深度处理方法而进行研究。过去深度处理一般是将污水的二级处理的排水(活性污泥生化处理后的出水)再进行混凝、过滤、活性炭吸附处理等,但对除盐过程却一直未予考虑。目前由于全球性水源紧张,各国都在大力推行节约用水,在大型工业城市,将城市污水处理后再回用于工业是今后的发展方向。或将城市污水深度处理后作为大型建筑物、家庭洗刷的用水、灌溉及绿化用水,即“中水”来源。以往的除盐方法主要有离子交换树法和电渗析法,但这些方法不能去除水中的有机物及不溶性杂质,把反渗透法作为弥补这一不足的一种方法,并进行研究,其中加里福尼亚的波莫纳(Pomona) 的试验是与联邦污水管理局(FWPCA)进行协作,主要是确定反渗透的脱盐效果、对有机物及富营养化成分的去除程度,还对运行中防止污染的方法及经济性作出评价,波莫纳的试验流程如图1所示。试验分两组进行,第一组用85个膜组件,第二组用68个膜组件,第一组水的回收率初期为80% ,后期降为78%,第二组水的回收率初期为80%,后期降为64%。
6.2 在日本反渗透法生活污水处理[1]在日本东京,建筑面积在3万m2以上的高层建筑,其循环用水量在100 m3/ d 的场所,如不建设中水道就拿不到建筑许可证。大楼排水可分为;比较干净的排水,如洗手、洗脸、空调排水、洗衣排水;比较脏的排污水,如厨房水等。对这类生活污水的处理要求处理设备效率高,对负荷的变动适应性强,运转容易,水的回收率大,设备体积小,不发出恶臭。而反渗透能够满足这些要求。在北九州地区及大阪地区,用反渗透(中压及低压) 进行200 m3/d的下水再生利用试验,再生水水质见表2。采取的流程如下;
北九州地区;经二级处理的下水—细滤网—斜板沉淀池—精过滤—反渗透(中空纤维2. 0-2.5MPa) —再生水(200 m3/d) 。
大阪地区;经二级处理的下水—斜板沉淀污—无烟煤过滤—反渗透(螺旋式组件2.0-3.0MPa) 。
表2 原水和再生水水质组别项目料液/mg/L透过水/mg/L浓缩液/mg/L去除率/%1COD10. 81. 743. 893.8NH3– N9. 21. 749. 094.2NO3- N2. 40. 87. 584.0PO4– P10. 10. 257.799.4TDS623733 40296.413COD12. 21. 937.292.3NH3– N5. 31. 526. 190. 1NO3-N12. 26. 034. 974. 6PO4-P9. 01. 443. 294. 6TDS5431452 73891. 22COD11. 40. 737. 497. 1NH3 – N17. 12. 959. 992. 5NO3-N2. 10. 88. 985. 5PO4 – P9. 70.0739. 899. 7TDS55251 257696. 7
6.3 在我国反渗透法生活污水处理
反渗透技术于80年代初在我国得到应用,首先用于电子工业超纯水及饮料业用水的制备,而后用于电厂用水处理,90年代起在饮用水处理方面获得普及。反渗透技术在我国工业水处理方面应用得比较多,但在城市污水处理方面,目前大部分还停留在实验室小试阶段,哈尔滨工业大学曾做过这方面的中试研究[2],利用组合膜工艺来进行城市含盐污水回用处理试验研究。
7 反渗透膜的发展趋势
最初反渗透是以脱盐为目的开发的,对膜的要求也只是为分离无机盐和水,随着反渗透用途的扩大,目前已达到根据用途对膜的构造进行设计的阶段。目前将传统的中压膜改为低压膜或超低压膜的动向非常活跃,其发展趋势概括如下:
在脱盐领域中,对于海水淡化由高压(5-7 MPa)向超高压(8-8.5 MPa);对于咸水淡化将向脱盐(地下水、江河水)、废水处理(工业废水、城市污水)和超纯水(电子工业用水、医疗用水)等三方面发展;对处理压强将由中压(3-4 MPa)向低压(1-2 MPa)甚至超低压(1 MPa以下);同时在有用物质浓缩回收领域会有更大的发展[10]。
目前,在海水淡化方面,利用复合膜成功的达到了高脱盐率。在咸水淡化方面,目前将传统的中压膜改为低压膜或超低压膜,并保持脱盐率不变(或提高),可以说是时代的潮流。
反渗透工程应用的另一个发展方向是反渗透膜组器与超滤、微滤、纳滤、EDI等组器的有机地组合应用,充分发挥各种膜分离技术的特性,形成一个完整的系统工程,达到浓缩、分离、提纯的目的。
鉴于RO技术的最近进展,在不久的将来,该领域中可望有如下的发展[11]:
(1) 将开发去除小的氯化物有机分子的聚合物膜。
(2) 将开发分离烃混合物的无机RO膜。
(3) 以动力膜为基础,将开发出无机和有机混合材料膜。
(4) 采用更先进的物理方法获悉膜的结构及膜中的液体的结构。
(5) 以控制聚合物体球粒的尺寸及球粒中聚合物的密度来控制膜的孔尺寸。
(6) 聚合物球粒的概念也将被用于复合膜的设计。
(7) 在膜孔尺寸和聚合物-溶液相互作用基础上,将发展更精确的传递理论。
(8) 由控制膜孔尺寸和膜溶质相互作用,将开发能将混合溶质分级的膜。
(9) 膜污染将被膜的设计及膜组件的设计所控制。
(10) RO和其它分离过程的混合分离系统将日益增长的渗入化学工业和有关工业,越来越多的将化学和生物反应与膜分离技术相结合。
总之,反渗透法除在水处理方面有着广泛的用途外,在化学工业、食品工业、医药工业以及气体分离等许多学科和领域都有着极其广泛的应用,特别是随着膜技术的发展。其潜在应用领域将会不断扩大,这门新兴的反渗透科学将会在今后的科学技术发展中大显身手,发挥更大的作用。
帖子301&精华&积分2191&威望9 &金钱5475 &UP值0 &最后登录&
反渗透膜的污染及清洗方法
本文介绍了影响复合膜性能的常见污染及其清洗方法,本文适用于 4 英寸、 6 英寸、 8 英寸及 8.5 英寸直径的反渗透膜元件。
注 1 :在任何情况下不要让带有游离氯的水与复合膜元件接触,如果发生这种接触,将会造成膜元件性能下降,而且再也无法恢复其性能,在管路或设备杀菌之后,应确保送往反渗透膜元件的给水中无游离氯时,应通过化验来确证,应使用亚硫酸氢溶液来中和残余氯,并确保足够的接触时间以保证反应完全。
注 2 :在反渗透膜元件担保期内,建议每次渗透膜清洗应与海德能公司协商后进行,至少在第一次清洗时,海德能公司的现场服务人员应在现场
注 3 :在清洗溶液中应避免使用阳离子表面活性剂,因为如果使用可能会造成膜元件的不可逆转的污染。
1. 反渗透膜元件的污染物
在正常运行一段时间后,反渗透膜元个会受到在给水中可能存在的悬浮物质或难溶物质的污染,这些污染物中最常见的为碳酸钙垢、硫酸钙垢、金属氧化物垢、硅沉积物及有机或生物沉积物。
污染物的性质及污染速度与给水条件有关,污染是慢慢发展的,如果不早期采取措施,污染将会在相对短的时间内损坏膜元件的性能。
定期检测系统整体性能是确认膜元件发生污染的一个好方法,不同的污染物会对膜元件性能造成不同程度的损害。表 1 列出了常见污染物对膜性能的影响。
2. 污染物的去除
污染物的去除可通过化学清洗和物理冲洗来实现,有时亦可通过改变运行条件来实现,作为一般的原则,当下列情形之一发生时应进行清洗。
2.1 在正常压力下如产品水流量降至正常值的 10 ~ 15% 。
2.2 为了维持正常的产品水流量,经温度校正后的给水压力增加了 10 ~ 15% 。
2.3 产品水质降低 10 ~ 15% 。盐透过率增加 10 ~ 15% 。
2.4 使用压力增加 10 ~ 15%
2.5 RO 各段间的压差增加明显 ( 也许没有仪表来监测这一迹象 ) 。
3. 常见污染物及其去除方法:
3.1 碳酸钙垢
在阻垢剂添加系统出现故障时或加酸系统出现而导致给水 PH 升高,那么碳酸钙就有可能沉积,出来,应尽早发现碳酸钙垢沉淀的发生,以防止生长的晶体对膜表面产生损伤,如早期发现碳酸钙垢,可以用降低给水 PH 至 3.0 ~ 5.0 之间运行 1 ~ 2 小时的方法去除。对沉淀时间更长的碳酸钙垢,则应采用柠檬酸清洗液进行循环清洗或通宵浸泡。
注:应确保任何清洗液的 PH 不要低于 2.0 ,盃则可能会 RO 膜元件造成损害,特别是在温度较高时更应注意,最高的 PH 不应高于 11.0 。查使用氨水来提高 PH ,使用硫酸或盐酸来降低 PH 值。
3.2 硫酸钙垢
清洗液 2( 参见表面化 ) 是将硫酸钙垢从反渗透膜表面去除掉的最佳方法。
3.3 金属氧化物垢
可以使用上面所述的去除碳酸钙垢的方法,很容易地去除沉积下来的氢氧化物 ( 例如氢氧化铁 ) 。
对于不是与金属化物或有机物共生的硅垢,一般只有通过专门的清洗方法才能将他们去除,有关的详细方法清与海德能公司联系。
3.5 有机沉积物
有机沉积物 ( 例如微生物粘泥或霉斑 ) 可以使用清洗液 3 去除,为了防止再繁殖,可使用经海德能公司认可的杀菌溶液在系统中循环、浸泡,一般需较长时间浸泡才能有效,如反渗透装置停用三天时,最好采用消毒处理,请与海德能公司会商以确定适宜的杀菌剂。
3.6 清洗液
清洗反渗透膜元件时建议采用表 2 所列的清洗液。确定清洗前对污染物进行化学分析十分重要的,对分析结果的详细分析比较,可保证选择最佳的清洗剂及清洗方法,应记录每次清洗时清洗方法及获得的清洗效果,为在特定给水条件下,找出最佳的清洗方法提供依据。
对于无机污染物建议使用清洗液 1 。对于硫酸钙及有机物建议使用清洗液 2 。对于严重有机物污染建议使用清洗液 3 。所有清洗可以在最高温度为华氏 104 度 ( 摄氏 40℃) 下清洗 60 分钟,所需用品量以每 100 加仑 (379 升 ) 中加入量计,配制清洗液时按比例加入药品及清洗用水,应采用不含游离氯的反渗透产品水来配制溶液并混合均匀。
反渗透膜的化学清洗与水冲洗 清洗时将清洗溶液以低压大流量在膜的高压侧循环,此时膜元件仍装压力容器内而且需要用专门的清洗装置来完成该工作。
清洗反渗透膜元件的一般步骤:
1. 用泵将干净、无游离氯的反渗透产品水从清洗箱 ( 或相应水源 ) 打入压力容器中并排放几分钟。
2. 用干净的产品水在清洗箱中配制清洗液。
3. 将清洗液在压力容器中循环 1 小时或预先设定的时间,对于 8 英寸或 8.5 英寸压力容器时,流速为 35~40 加仑 / 分钟 (133~151 升 / 分钟 ) ,对于 6 英寸压力容器流速为 15~20 加仑 / 分钟 (57~76 升 / 分钟 ) ,对于 4 英寸压力容器流速为 9~10 加仑 / 分钟 (34~38 升 / 分钟 )
4. 清洗完成以后,排净清洗箱并进行冲洗,然后向清洗箱中充满干净的产品水以备下一步冲洗。
5. 用泵将干净、无游离氯的产品水从清洗箱 ( 或相应水源 ) 打入压力容器中并排放几分钟。
6. 在冲洗反渗透系统后,在产品水排放阀打开状态下运行反渗透系统,直到产品水清洁、无泡沫或无清洗剂 ( 通常需 15~30 分钟 ) 。
表1.反渗透膜污染特征及处是方法 污染物
钙类沉积物
(碳酸钙及磷酸钙类,一般发生于系统第二段)
脱盐率明显下降
系统压降增加
系统产水量稍降
用溶液1清洗系统
(铁、镍、铜等)
脱盐率明显下降
系统压降明显升高
系统产水量明显降低
用溶液1清洗系统
(铁、有机物及硅胶体)
脱盐率稍有降低
系统压降逐渐上升
系统产水量逐渐减少
用溶液2清洗系统
(一般发生于系统第二段)
脱盐率明显下降
系统压降稍有或适度增加
系统产水量稍有降低
用溶液2清洗系统
污染严重时用溶液3清洗
有机物沉积
脱盐率可能降低
系统压降逐渐升高
系统产水量逐渐降低
用溶液2清洗系统
污染严重时用溶液3清洗
脱盐率可能降低
系统压降明显增加
系统产水量明显降低
依据可能的污染种类
选择三种溶液中
的一种清洗系统
说明:必须确认污染原因,并消除污染源,如需助请与海德能公司联系 表2.建议使用的常见清洗液 清洗液
配制<font color="#0加仑(379升)溶液时的加入量
反渗透产品水(无游离氯)
17.0 磅 ( 7.7 kg )
100 加仑 ( 379 L )
用氨水调节pH至3.0
三聚磷酸钠
EDTA四钠盐
反渗透产品水(无游离氯)
17.0 磅 ( 7.7 kg )
7 磅 ( 3.18 kg )
100 加仑 ( 379 L )
用硫酸调节pH至10.0
三聚磷酸钠
十二烷基苯磺酸钠
反渗透产品水(无游离氯)
17.0 磅 ( 7.7 kg )
2.13 磅 ( 0.97 kg )
100 加仑 ( 379 L )
用硫酸调节pH至10.0
帖子301&精华&积分2191&威望9 &金钱5475 &UP值0 &最后登录&
反渗透及其发展
以高分子分离膜为代表的膜分离技术作为一种新型的流体分离单元操作技术,三十年来取得了令人瞩目的巨大发展。据有关文献估计,今天的分离膜世界市场规模已达到每年20亿美元以上。表1和图1分别给出了按分离原理和按被分离物质的大小区分的分离膜种类,从中可以看出,除了透析膜主要用于医疗用途以外,几乎所有的分离膜技术均可应用石油、天然气及石油化工行业中去。反渗透和纳滤作为主要的水及其它液体分离膜之一,在分离膜领域内占重要地位。& & 1953年美国佛罗里达大学的Reid等人最早提出反渗透海水淡化,1960年美国加利福尼亚大学的Loeb和Sourirajan研制出第一张可实用的反渗透膜。从此以后,反渗透膜开发有了重大突破。膜材料从初期单一的醋酸纤维素非对称膜发展到用表面聚合技术制成的交联芳香族聚酰胺复合膜。操作压力也扩展到高压 ( 海水淡化 ) 膜,中压 ( 醋酸纤维素 ) 膜,低压 ( 复合 ) 膜和超低压 ( 复合 ) 膜。80年代以来,又开发出多种材质的纳滤膜。&&
膜的种类膜的功能分离驱动力透过物质被截留物质微滤多孔膜、溶液的
微滤、脱微粒子压力差水、溶剂
和溶解物悬浮物、细菌类、微粒子超滤脱除溶液中的胶
体、各类大分子压力差溶剂、离子
和小分子蛋白质、各类酶、细菌、
病毒、乳胶、微粒子反渗透和纳滤脱除溶液中的
盐类及低分子物压力差水、溶剂无机盐、糖类、氨基酸、
BOD、COD等 透析脱除溶液中的
盐类及低分子物浓度差离子、低分
子物、酸、碱无机盐、糖类、氨基酸、
BOD、COD等 电渗析脱除溶液中的离子电位差离子无机、有机离子渗透气化溶液中的低分子
及溶剂间的分离压力差
浓度差蒸汽液体、无机盐、
乙醇溶液气体分离气体、气体
与蒸汽分离浓度差易透过气体不易透过气体& & 膜组件的形式近年来也呈现出多样化的趋势。除了传统的中空纤维式、卷式、管式及板框式以外,又开发出回转平膜、浸渍平膜式等。工业上应用最多的是卷式膜,它占据了绝大多数陆地水脱盐和越来越多的海水淡化市场。中空纤维膜在海水淡化应用中仍占有很高的份额。今天世界上反渗透、纳滤膜水处理装置的能力已达到每天数百万吨。目前世界最大的反渗透苦咸水淡化装置为位于美国亚利桑拿州的日产水量为28万吨的运河水处理厂,最大的反渗透海水化装置,位于沙特阿拉伯,日产水量为12.8万吨。最大的纳滤脱盐软化装置位于美国佛罗里达州,日产水量为3.8万吨。
帖子65&精华&积分133&威望0 &金钱21 &UP值0 &最后登录&
版主真是膜界神龙,请多多发表经验。
帖子114&精华&积分298&威望0 &金钱253 &UP值2 &最后登录&
反渗透问题专集
《反渗透问题专集反渗透问题专集&
附件: 您所在的用户组无法下载或查看附件
己身不正 何以正人
帖子40522&精华&积分250353&威望77 &金钱16920 &UP值628 &最后登录&
此帖子应该移动到膜技术板块才对。
朋友,如有需要进口反渗透膜
请您与我联系啊
绝对给你尖叫的价格
相关产品提供原产地证明及报关证明
供应产品型号
BW30-365IG
BW30-400IG
BW30-400/34i
BW30-365FR
BW30-400FR
BW30FR-400/34i
XFRLE-400/34i
BW30HR-440i
UID98551&阅读权限150&来自深圳&在线时间22755 小时&注册时间&最后登录&
帖子98&精华&积分49&威望0 &金钱5 &UP值0 &最后登录&
楼主厉害.要是整理一下就更好了
帖子89&精华&积分1405&威望6 &金钱156 &UP值68 &最后登录&
欢迎到海水淡化,
帖子300&精华&积分2222&威望3 &金钱1747 &UP值444 &最后登录&
海水淡化势在必行!海水淡化势在必行!海水淡化势在必行!海水淡化势在必行!海水淡化势在必行!
UID98687&阅读权限50&来自天津&在线时间207 小时&注册时间&最后登录&
帖子80&精华&积分40&威望0 &金钱80 &UP值0 &最后登录&
真全面,多谢分享!!!
帖子185&精华&积分943&威望0 &金钱31 &UP值0 &最后登录&
谢谢楼主,正需要呢!
帖子1863&精华&积分12186&威望1 &金钱1155 &UP值337 &最后登录&
介绍的很详细 谢谢了
帖子1747&精华&积分27538&威望10 &金钱7271 &UP值652 &最后登录&
回复 3# 的帖子
好多内容啊
下回去慢慢看……
UID51884&阅读权限100&在线时间2664 小时&注册时间&最后登录&}

我要回帖

更多关于 摩阻流速 的文章

更多推荐

版权声明:文章内容来源于网络,版权归原作者所有,如有侵权请点击这里与我们联系,我们将及时删除。

点击添加站长微信