微纳金属3D打印技术应用:AFM探针?

使用显微镜时,由于影像放大的缘故,往往对被观察标本的实际大小无法立刻看出。大概只能推估放大的倍率而己;那么如何度量显微镜下的标本大小呢?当你要度量一个标本的长度时,最简单的方法是:拿把尺直接量,但标本在玻片上,显然无法把尺直接迭在上面测量,而且使用的物镜不同,放大的倍率也有差异,这些都说明了在显微镜下测量标本另有方法。既然物镜、玻片标本上都无法放把尺,那哪里可以放个测量的工具呢?答案是目镜,第一个我们要使用的是一个小小圆圆的镜片,称做目镜测微器(Ocular micrometer),把目镜的镜片旋开,这个小圆片即可放入,注意把它和目镜迭好,这样你观察标本时,便可以看到标本上会出现一个有着刻度的直尺在标本上面,那应该就可以量标本大小了吗?答桉是不行,因为当你旋转物镜时,你会发现标本大小改变了 但目镜上的刻度却没有变化,显然,这把尺上的刻度在不同物镜倍率时所代表的长度应该是不同的。那这个圆片上的刻度到底代表多少?又如何计......

随着光学技术的不断进步,偏光显微镜的应用范围也越来越广阔,许多行业,如化工,半导体工业以及药品检验等等,都广泛地使用偏光显微镜。偏光显微镜产品优势:锥光观察更加清楚。1、优势的散热装置,LED照明可选。2、无限远光学系统,成像更加清晰。3、真正无应力物镜,中心可调,保证实验数据的精准性。4、微调格值

随着光学技术的不断进步,偏光显微镜的应用范围也越来越广阔,许多行业,如化工,半导体工业以及药品检验等等,都广泛地使用偏光显微镜。偏光显微镜产品优势:锥光观察更加清楚。1、优势的散热装置,LED照明可选。2、无限远光学系统,成像更加清晰。3、真正无应力物镜,中心可调,保证实验数据的精准性。4、微调格值

最早的雏形应该是相机型显微镜,将显微镜下得到的图像通过小孔成象的原理,投影到感光照片上,从而得到图片。或者直接将照相机与显微镜对接,拍摄图片。随着CCD摄像机的兴起,显微镜可以通过其将实时图像转移到电视机或者监视器上,直接观察,同时也可以通过相机拍摄。80年代中期,随着数码产业以及电脑业的发展,显微

公司经营的主要产品有:工业显微镜、金相显微镜、大平台金相显微镜、测量显微镜、非接触三座标测量显微镜、偏光显微镜、数码显微镜、显微镜数码相机接口、体视显微镜专用冷光源、生物显微镜、体视显微镜、数码图像处理系统及代理国内外专业生产厂商的先进高科技仪器(包括:进口显微镜、离心机、天平、超低温冰箱等)。

随着电视技术的发展,电视录像已愈来愈广泛地应用于显微镜领域.并且已经制造出专门的电视显微镜。通过一个电视环形闭路系统,在显微镜上所观察到的标本的像,可以直接显示在电视接收机的荧光屏上。并且还可以把标本的像录在录像磁带上,需要时非常方便地再次显示。图16.2就是一个电视显微镜及电视环形闭路系统。金相显

金相显微镜--电视显微镜介绍随着电视技术的发展,电视录像已愈来愈广泛地应用于显微镜领域.并且已经制造出专门的电视显微镜。通过一个电视环形闭路系统,在显微镜上所观察到的标本的像,可以直接显示在电视接收机的荧光屏上。并且还可以把标本的像录在录像磁带上,需要时非常方便地再次显示。图16.2就是一个电视显微

  奥林巴斯显微镜在中国市场一直占据着非常大的市场份额,这是因为在很大程度上奥林巴斯显微镜相对其他公司的显微镜更具有价格优势。而且且奥林巴斯自有的无限远光学系统在业界也是有一定的口碑除了价格优势之外,奥林巴斯还有许多技术或性能上的优势值得大家认可的。   1、奥林巴斯显微镜有出色的性价比,可以满足

立体显微镜(stereomicroscope)一一它具有内建式的两部显微镜的光学系统,每一个系统由不同的角度以反射光观察不透明的标本, 此种显微镜一定要有双筒的目镜,因此所观察的物体可产生三度空间的立体影像。此显微镜亦可用来解剖微小的生物标本,工业上则可用来组合零件,因此又被称为   解剖显微镜 (

在很早之前,人们就开始研究金属与合金的性质及性能与组织之间的内在,以便找到保证金属与合金材料的质量和制造新型合金的方法,但直至显微镜问世后,人们才初步具备了对金属材料深入研究的条件。     人们在放大几百倍甚至上万倍的奥林巴斯金相显微镜下,来观察金属材料的内部组织,即金相组织结构,从而发现了金

金相显微镜金相显微镜是专门用于观察金属和矿物等不透明物体金相组织的显微镜。这些不透明物体无法在普通的透射光显微镜中观察,故金相和普通显微镜的主要差别在于前者以反射光,而后者以透射光照明。在金相显微镜中照明光束从物镜方向射到被观察物体表面,被物面反射后再返回物镜成像。这种反射照明方式也广泛用于集成电路

}

在光线下形成聚合物或长链分子的树脂或其他材料,对于从建筑模型到功能性人体器官部件的3D打印而言是十分有吸引力的。但是,在单个体素的固化过程中,材料的机械和流动特性会发生怎样变化,这一点很神秘。体素是体积的3D单位,相当于照片中的像素。

图为聚合树脂单个体素的3D地形图像,被液体树脂包围。(NIST的研究人员使用样品耦合共振光流变学(SCRPR)技术来测量3D打印和固化过程中材料性质在小尺度上实时变化的方式和位置。)图片来源:NIST现在,美国国家标准与技术研究院(NIST)的研究人员已经展示了一种新型的基于光的原子力显微(AFM)技术——样品耦合共振光学流变学(SCRPR),它可以在材料固化过程中以最小的最小尺度测量材料性质在实际中的变化方式和位置。NIST材料研究工程师Jason Killgore说:“我们对工业方法产生了浓厚的兴趣,而这只是一些会议讨论的结果。”他和他的同事现在已经在“Small”杂志上发表了这项技术。三维印刷或增材制造受到称赞,可以十分灵活、高效地生产复杂零件,但其也有缺点,就是会在材料特性方面引入微观变化。由于软件将零件渲染为薄层,在打印前三维重建它们,因此材料的整体属性不再与打印零件的属性相匹配。相反,制造零件的性能取决于打印条件。NIST的新方法可以测量材料如何随亚微米空间分辨率和亚毫秒时间分辨率发展的——比批量测量技术小数千倍且更快。研究人员可以使用SCRPR来测量整个固化过程中的变化,收集关键数据,以优化从生物凝胶到硬质树脂的材料加工。这种新方法将AFM与立体光刻技术相结合,利用光线对光反应材料进行图案化,从水凝胶到增强丙烯酸树脂。由于光强度的变化或反应性分子的扩散,印刷的体素可能变得不均匀。AFM可以感知表面的快速微小变化。在NIST SCRPR方法中,AFM探针持续与样品接触。研究人员采用商业AFM,使用紫外激光在AFM探针与样品接触的位置或附近开始形成聚合物(“聚合”)。该方法在有限时间跨度内,在空间中的某一个位置处测量两个值。具体而言,它测量AFM探针的共振频率(最大振动的频率)和品质因数(能量耗散的指标),跟踪整个聚合过程中这些值的变化。然后可以使用数学模型分析这些数据,以确定材料属性,例如刚度和阻尼。用两种材料证明了该方法。一种是由橡胶光转化为玻璃的聚合物薄膜。研究人员发现,固化过程和性能取决于曝光功率和时间,并且在空间上很复杂,这证实了快速,高分辨率测量的必要性。第二种材料是商业3-D印刷树脂,在12毫秒内从液体变成固体。共振频率的升高似乎表明固化树脂的聚合和弹性增加。因此,研究人员使用AFM制作了单个聚合体素的地形图像。让研究人员感到惊讶的是,对NIST技术的兴趣远远超出了最初的3D打印应用。NIST的研究人员表示,涂料,光学和增材制造领域的公司已经开始感兴趣,有些正在寻求正式的合作。

特别声明:以上内容(如有图片或视频亦包括在内)为自媒体平台“网易号”用户上传并发布,本平台仅提供信息存储服务。

}

我要回帖

更多关于 金属探针的使用方法 的文章

更多推荐

版权声明:文章内容来源于网络,版权归原作者所有,如有侵权请点击这里与我们联系,我们将及时删除。

点击添加站长微信