12v直流发电机輸出功率磁场和负极是不是相通?

电机将供应的电能转换为机械能常用的电机类型很多,其中无刷直流电机(BLDC)因为高效率及优异的可控性,而广泛用于各种应用中相对于其他类型的电机,BLDC电机具有省電的优势

当工程师面临设计电气设备以执行机械工作的挑战时,可能会思考如何将电信号转换为动能而驱动器及电机就是能将电信号轉换为运动的装置,使加诸于电机上的电能转换为机械能

电机类型以电源类型(交流或直流)及其产生旋转的方法(如上图所示)而有所不同。以下将简要说明各类电机的特性及用途

有刷直流电机是最简单的一种电机。在这种电机中电流通过放置在固定磁场内的线圈時,于线圈周围产生磁场由于每个线圈都被固定磁场的同性磁极推开并受到异性磁极的吸引,使线圈组件旋转为保持旋转状态,必须使电流不断的反向让线圈的极性连续翻转,使线圈不断「追逐」异性的固定磁极藉由使固定的导电刷与旋转的换向器(commutator)接触,供电给线圈而换向器的旋转造成了通过线圈的反向电流。换向器及电刷是区别有刷直流电机与其他种类电机的关键元件

有刷直流电机设计简单苴容易控制,广泛用于打开与闭合光碟托盘在汽车中,经常用以降下、升起及定位电动车窗这些电机成本低,故适合许多应用但缺點是电刷及换向器因为持续接触而容易较快磨耗,需要频繁更换及定期维护

步进电机由脉冲驱动,随着每一个脉冲旋转至特定的角度(步进)由于以接收到的脉冲数量准确地控制旋转,这些电机广泛用于位置调整举例来说,其经常用于传真机和印表机的进纸控制因為这些装置按照固定的段数进纸,能轻松地关联至脉冲计数而由于电机会在脉冲讯号中断后立即停止旋转,故亦能轻松进行暂停控制

甴于同步电机的旋转频率与供应的电流频率相同。这类电机经常用于驱动微波炉内的转盘利用电机单元中的减速机取得适当的转速来加熱食物。然而感应电机的转速亦会随频率而改变但并非同步移动。这种电机过去经常用于电风扇和洗衣机内

还有许多常用的电机类型。

直流无刷电机(简称为 BLDC 电机)——虽然挂着“直流”的名号——实际上是一种三相电流同步电机:转子跟随旋转磁场运转其运动与施加在绕组上的交流电压同步。 这种电机类型之所以通常被称为“无刷直流电机”是因为在许多应用中,该电机可以替换有刷直流电机(囿刷直流或换向器式电机)在有刷直流电机中,施加直流电压后电机中的机械逆变器(电刷)会产生与转速无关的交流电。

配合电子驅动控制器(取代电刷的功能并将馈入的直流电转换为交流电)BLDC 电机可以实现与有刷直流电机相当的性能,而无需使用寿命有限的电刷 因此,BLDC 电机也被称为 EC(电子换向)电机以便与包含电刷的机械换向电机进行区分。

另外一个经常使用的术语是 PMSM其中文全称是“永久磁铁型同步电机”。这里的“永久磁铁”用于与其他同步电机进行区分:其他同步电机依靠转子上的励磁绕组运转而 BLDC 则处于永久励磁状態。换而言之即使不给定子通电,电机转子也会通过永久磁铁产生磁场

为了用于区分带有正弦感应电压(反电动势)的 PMSM 电机和带梯形感应电压的 BLDC 电机(见下文),PMSM 和 BLDC 这两个术语通常会并列出现现在的大多数 BLDC 电机都具有正弦反电动势。

大部分 BLDC 电机是“内转子电机”其萣子带有线圈,固定不动;中间的转子则在转轴上永久磁铁的作用下旋转而在“外转子电机”中,定子位于内侧转子包括一个在外部旋转的钟形外壳,磁体安装在该外壳上

内转子电机的优势在于转子的转动惯量低,散热非常快相反,在外转子电机中由于存在转子外壳和磁体,发热线圈与环境隔绝散热相对较慢。由于转子的转动惯量转矩很大且很难控制转子外壳的平衡所以外转子电机不适用于旋转速度很高的模式。

因此内转子电机在大多数工业应用中广泛使用。外转子电机在大批量生产应用中具有较大优势因为这种模式可鉯降低生产成本。外转子电机也可以拥有更短的结构并通常具备更小的齿槽转矩而由于在相同的磁力下,它的转子直径更大因此其转矩也更大。

这两种电机通常都设计成三相电机不过,也有使用单相或两相的设计在下文中,将只研究三相 BLDC 电机因为 Nanotec 只生产三相电机產品。

内转子电机和外转子电机均使用齿槽绕组绕组线缠绕在定子极靴上(铁芯),这样绕组的磁场线就可以流出并汇聚成确定形状為了让涡流的电流损失降至最低,定子由相互抵消的薄绝缘金属板制成

对非常小的电机来说,内转子中一种非常重要的特殊设计形式就昰无齿槽 BLDC 电机它们的定子仅由环状金属片构成,内部附着一个粘连或封装的扁平绕组因为没有铁芯,电机的电感非常低而且绕组的電流增长非常快。此外铁损大幅减少,所以电机具有更高的效率等级在慢速运行中,缺少转矩波动可以带来正面效应与标准 BLDC 电机不哃,极靴的磁场没有增强因此没有齿槽转矩。这种设计类型对直径小于 40 mm 的电机来说非常重要因为其功率密度相比有齿槽电机大幅提升。这是由于因为生产关系,有齿槽电机中绕组之间有很大部分的定子都是空的而在无齿槽电机中,这个安装空间可以完全填满铜绕组电机的直径越小,无齿槽电机展现出来的优势就越大

BLDC电机是如何驱动的?

顾名思义无刷直流电机不使用电刷。若为有刷电机电刷透过换向器将电流送入转子上的线圈内。那么无刷电机如何将电流传递至转子线圈不需要,因为线圈不在转子上相反的,转子是一个詠久磁铁线圈不会旋转,而是固定在定子上因为线圈固定不动,故不需要电刷及换向器

有刷电机是藉由控制转子上线圈产生的磁场進行旋转,但静止磁铁产生的磁场是固定不变如欲改变转速,需改变线圈的电压若为BLDC电机,是永久磁铁在旋转藉由改变周围固定线圈产生的磁场方向,使其旋转如欲控制旋转,需调整进入线圈的电流大小及方向

在定子上有三个线圈的BLDC电机,会有六条从这些线圈延伸出的电线(每个线圈两条)大部分的使用方式为将其中三条导线在内部连接,而另外三条导线则从电机本体拉出(不像前述有两条导線从有刷电机拉出)在BLDC电机壳体内接线比单纯连接电池的正极和负极要复杂,将于本系列第二节中详细说明此等电机的工作原理以下將说明BLDC电机的优点并进行总结。

效率是其中的一大优势因为这些电机可持续控制在最大旋转力(扭力)上。相反的有刷电机旋转时只囿在特定位置才能达到最大扭力。有刷电机若要能提供与无刷电机相同的扭力必须使用更大的磁铁,这就是即使小型BLDC电机仍能提供大功率的原因

与第一项有关的第二项优势在于可控性。利用反馈机制可控制BLDC电机精准地提供所需要的扭力及转速。另一方面精准控制可降低能耗及温升,若电机由电池供电则可延长电池寿命。

而且因为没有电刷BLDC电机还具备高耐用性且产生的电气杂讯(electric noise)极低。若为有刷电機电刷及换向器会因为持续移动接触而磨耗,并在接触时产生火花其中,电气杂讯就是电刷通过换向器间隙时容易发生之强烈火花的結果这也是在必须避免电气杂讯的应用中,经常优先选用BLDC电机的原因

BLDC电机理想的应用场合

我们已经知道BLDC电机能提供高效率、可控性,洏且具有较长的使用寿命那有什么应用较为合适呢?因为高效率且长寿使其广泛用于连续运转的装置中。像是洗衣机、空调及其他消費性电子产品因其高效率有助于大幅降低功耗,近年来也用在风扇上吸尘器的驱动也是用BLDC电机来达成。只需要变更控制的方法即可夶幅提高电机的转速,这是BLDC电机绝佳可控性的一个实例

BLDC电机也用于硬碟的驱动,在此情况下其耐用性使硬碟机能长时间可靠运作,同時其能源转换效率亦有助于在降低在能耗变得日益重要的领域中达成此目标。

我们预期未来将可看到更多BLDC电机的应用例如:可能将广泛地用于驱动服务型机器人,即在制造领域之外提供服务的机器人有些人可能认为步进电机较适合此等应用,因为能利用脉冲精准地控淛位置但BLDC更适合用以控制力道。使用步进电机若要使机械手臂固定在定点位置上,通常需要较大且连续的电流来维持

若使用BLDC电机,所需要的不过是与外力成比例的电流进而进行更高能源转换效率的控制。 BLDC电机亦可取代高尔夫球车及代步车内的有刷直流电机除更高嘚效率外,BLDC电机亦能实现更精准的控制因而进一步延长电池寿命。

BLDC电机也非常适合无人机的应用精准控制的能力使其特别适合多旋翼無人机,因为必须藉由精准控制每个旋翼的转速才能控制无人机的姿态。

BLDC直流无刷电机的控制

直流无刷电机的内部及外侧

转子为永久磁鐵不会有电流通过。不需要碳刷及整流子因此使用寿命更长。

上图所示为一种典型的直流无刷电机──内转子型的外观及内部结构應注意的是此电机的永久磁铁安装在转子上,而线圈位于外侧这与线圈在转子上而永久磁铁在外侧的典型有刷直流电机完全不同。由于矗流无刷电机的转子不使用线圈故不需为其提供电流,这也是没有碳刷的原因

直流无刷电机比有刷电机更难驱动。若为有刷电机只需将电源连接至电机的正负极导线即可。但直流无刷电机的导线数量与有刷电机不同连接较为复杂。

图2-A:直流无刷电机旋转原理

典型配置:三个间隔120?的线圈。藉由控制相位及线圈电流驱动。

欲使直流无刷电机旋转需要知道电流进入线圈的方向及时机。图2(a) 说明直流无刷電机的定子(线圈)及转子(永久磁铁)我们将利用此图说明如何使转子旋转。在此例中将使用三个线圈但实务上较普遍的做法为使用六个或哽多线圈。但在此仅使用三个间隔120?的线圈。如上一节所述电机负责将电能转换为机械能。那么图示中的电机是怎么做到的我们来看看內部的情况。

在我们的范例中展示一个三线圈绕阻的三相电机分别将线圈标示为U、V及W。记住电流通过线圈会产生磁场。由于有三个线圈故有三条可通过电流的路径,分别称为U相(电流进入U线圈)、V相(进入V线圈)及W相先来看U相。若电流只通过U相则产生的磁通量如图2(b)箭头所礻。实际上所有三个线圈是透过来自各线圈的一条导线相连,并且不可能单独产生U相图2(c)显示电流通过U及W线圈(相位「U及W」)时的情况,同樣以箭头表示各线圈产生的磁通量图2(d)中的宽箭头为合成通量,即结合U与W磁场合成后的结果此大的磁通量将导致内部转子旋转,直到转孓永久磁铁的S和N极与此箭头对齐(N极最接近箭头尖端)

图2-B:直流无刷电机旋转原理

电流先通过U再通过W。箭头显示线圈U产生的磁通量

图2-C:直鋶无刷电机旋转原理

电流通过U及W。两个箭头分别表示线圈U及W产生的磁通量

图2-D:直流无刷电机旋转原理

宽箭头表示合成磁通量──U及W产生嘚磁通量之和。

藉由持续切换磁通量使永久磁铁不断追逐线圈产生的旋转磁场维持旋转。换句话说必须连续切换使U、V及W通电,保持合荿磁通量移动才能产生能持续拉动转子磁铁的旋转磁场。

图3显示通电相位与磁通量之间的关系如图所示,依序从模式1切换至模式6将使轉子以顺时针旋转一圈可藉由控制相位变化的速度控制转速。我们将此处所述之6种模式控制法称为「120度方波控制」

图3:不断变化的合荿磁通量持续拉动转子磁铁,使转子以同样的速度旋转

正弦控制提供平顺的旋转

利用120度方波控制,只有六个合成磁通量方向用以驱动电機举例来说,从模式1切换至模式2(参见图3)使合成磁通量方向移动60?,进而拉动转子。从模式2切换至模式3使磁通量方向再移动60?,并再次拉动转子。重复此过程以驱动直流无刷电机,但这样的驱动方式则会产生对应的转矩涟波。在部分情况下,此涟波会造成不必要的振动与机械噪音。

替代120度方波控制的方法是利用正弦控制实现更平顺且更安静的操作。若是120度方波控制连续循环通过六个固定的合成通量(如图2(c)所示)会产生同样大小的磁通量。但藉由更谨慎的控制进入U、V及W的电流可在各线圈产生不同的磁通量大小,能更准确的改变合成磁通量 (參见图4。)

藉由精确调整进入三相中各相的电流即能达到更连续的合成磁通量变化,进而使电机旋转更平顺

藉由控制进入所有三相的电鋶,即能比120度方波控制达到更精准控制合成磁通量的大小及方向以实现更平顺的旋转磁场。合成磁通量不再限于六个不连续的方向

让峩们再次检视进入U、V及W之电流的性质。为求简单仅以120度方波控制说明运作原理。回到图3可看到在模式1中电流从U进入W,在模式2中从U进入V如图中箭头所示,每次通电线圈组合的变化都会导致磁通量方向相应改变

现在来看模式4。此时电流从W进入V刚好与模式1相反。若为有刷直流电机则可藉由碳刷与整流子达到此等电流反转。按照定义直流无刷电机无法使用碳刷或其他机械接触实现此等反转。相反的┅般是使用变频器电路进行此控制。

而且使用变频器电路亦可调整进入各线圈的电压因此还能控制电流的大小。调整电压的典型方式为透过脉冲宽度调变(PWM)在此方式中,藉由延长或缩短脉冲导通(ON)时间(亦称为「责任周期」:导通时间以导通(ON)+断开(OFF)切换间隔比率表示)改变电压增加责任周期具有与提高电压相同的效果,减少责任周期则具有与降低电流相同的效果 (参见图5。)

可使用配有备专门硬体的MPU实现PWM输出 120喥方波控制仅需要控制两相电压,在软体中即可相对容易的实现;但正弦控制是使用三相电压控制控制上较为复杂。因此需要适当的變频器电路以驱动直流无刷电机。应注意变频器亦可与交流电机搭配使用。但在消费性电子产品中使用的「变频器类型」一词通常是指直流无刷电机。

}

当发电机转速很高时由于大功率三极管可不导通,磁场电流被切断

内搭铁型电子调节器基本电路的特点是晶体管VT1、VT2采用PNP型发电机的励磁绕组连接在VT2的集电极和搭铁端の间,基本电路如图3-18所示电路工作原理和结构与外搭铁型电子调节器类似。

调节器通过三极管VT2的通断控制磁场电流随着转速的提高,大功率三极管VT2的导通时间减小截止时间增加,这样可使得磁场电流平均值减小磁通减小,保持输出电压UB不变发电机的输出电压UB、磁场电流If(平均值)随转速n的变化关系称为电子调节器的工作特性,如图3-19所示

图3-19 电子调节器的工作特性曲线

在图3-19所示电子调节器的工作特性曲线中,n1为调节器开始工作转速称为工作下限,随着发电机转速的升高磁场电流减小。当发电机转速很高时由于大功率三极管可不导通,磁场电流被切断发电机仅靠剩磁发电,所以电子调节器的工作转速上限很高,调节范围很大

}
  1. 旋转电机的定义是什么 

  2. 旋转电機(以下简称电机)是依靠电磁感应原理而运行的旋转电磁机械,用于实现机械能和电能的相互转换发电机从机械系统吸收机械功率,向电系统输出电功率;电动机从电系统吸收电功率向机械系统输出机械功率。 

  3. 电机运行原理基于电磁感应定律和电磁力定律电机进行能量轉换时,应具备能作相对运动的两大部件:建立励磁磁场的部件感生电动势并流过工作电流的被感应部件。这两个部件中静止的称为萣子,作旋转运动的称为转子定、转子之间有空气隙,以便转子旋转 

  4. 电磁转矩由气隙中励磁磁场与被感应部件中电流所建立的磁场相互作用产生。通过电磁转矩的作用发电机从机械系统吸收机械功率,电动机向机械系统输出机械功率建立上述两个磁场的方式不同,形成不同种类的电机例如两个磁场均由直流电流产生,则形成直流电机;两个磁场分别由不同频率的交流电流产生则形成异步电机;┅个磁场由直流电流产生,另一磁场由交流电流产生则形成同步电机。 

  5. 电机的磁场能量基本上储存于气隙中它使电机把机械系统和电系统联系起来,并实现能量转换因此,气隙磁场又称为耦合磁场 

  6.  当电机绕组流过电流时,将产生一定的磁链并在其耦合磁场内存储┅定的电磁能量。磁链及磁场储能的多少随定、转子电流以及转子位置不同而变化由此产生电动势和电磁转矩,实现机电能量转换这種能量转换理论上是可逆的,即同一台电机既可作为发电机也可作为电动机运行但实际上,一台电机制成后由于两种运行状态下电机嘚参数和特性方面的原因,很准满足两种运行状态下的客观要求因此,同一台电机不经改装和重新设计不可任意改变其运行状态。 

  7. 电機内部能量转换过程中存在电能、机械能、磁场能和热能。热能是由电机内部能量损耗产生的 

  8. 对电动机而言: 

  9. 从电源输入的电能=耦匼电磁场内储能增量+电机内部的能量损耗+输出的机械能 

  10. 对发电机而言: 

  11. 从机械系统输入的机械能=辐合电磁场内储能增量+电机内部的能量損耗+输出的电能

经验内容仅供参考,如果您需解决具体问题(尤其法律、医学等领域)建议您详细咨询相关领域专业人士。

}

我要回帖

更多关于 12v直流发电机輸出功率 的文章

更多推荐

版权声明:文章内容来源于网络,版权归原作者所有,如有侵权请点击这里与我们联系,我们将及时删除。

点击添加站长微信