如何证明两直线平行直线Y=X+5与Y=e^x有两个交点

当前位置:
>>>如图,已知直线y=x+1与y轴交于点A,与x轴交于点D,抛物线y=x2+bx..
如图,已知直线y=x+1与y轴交于点A,与x轴交于点D,抛物线y=x2+bx+c与直线交于A、E两点,与x轴交于B、C两点,且B点坐标为(1,0).(1)求该抛物线的解析式;(2)动点P在x轴上移动,当△PAE是直角三角形时,求点P的坐标P;(3)在抛物线的对称轴上找一点M,使|AM﹣MC|的值最大,求出点M的坐标.
题型:解答题难度:偏难来源:浙江省竞赛题
解:(1)将A(0,1)、B(1,0)坐标代入y=x2+bx+c得,解得,∴抛物线的解折式为y=x2﹣x+1;(2)设点E的横坐标为m,则它的纵坐标为m2﹣m+1,即E点的坐标(m,m2﹣m+1),又∵点E在直线y=x+1上,m2﹣m+1=m+1解得m1=0(舍去),m2=4,∴E的坐标为(4,3).①当A为直角顶点时,过A作AP1⊥DE交x轴于P1点,设P1(a,0)易知D点坐标为(﹣2,0),由Rt△AOD∽Rt△P1OA得即,∴a=,∴P1(,0).②同理,当E为直角顶点时,过E作EP2⊥DE交x轴于P2点,由Rt△AOD∽Rt△P2ED得,即=,∴EP2=,DP2==∴a=﹣2=,P2点坐标为(,0).③当P为直角顶点时,过E作EF⊥x轴于F,设P3(b、0),由∠OPA+∠FPE=90°,得∠OPA=∠FEP,Rt△AOP∽Rt△PFE,由得,解得b1=3,b2=1,∴此时的点P3的坐标为(1,0)或(3,0),综上所述,满足条件的点P的坐标为(,0)或(1,0)或(3,0)或(,0);(3)抛物线的对称轴为,B、C关于x=对称,∴MC=MB,要使|AM﹣MC|最大,即是使|AM﹣MB|最大,由三角形两边之差小于第三边得,当A、B、M在同一直线上时|AM﹣MB|的值最大.易知直线AB的解折式为y=﹣x+1由,得,∴M(,﹣).
马上分享给同学
据魔方格专家权威分析,试题“如图,已知直线y=x+1与y轴交于点A,与x轴交于点D,抛物线y=x2+bx..”主要考查你对&&求二次函数的解析式及二次函数的应用,直角三角形的性质及判定,相似三角形的性质&&等考点的理解。关于这些考点的“档案”如下:
现在没空?点击收藏,以后再看。
因为篇幅有限,只列出部分考点,详细请访问。
求二次函数的解析式及二次函数的应用直角三角形的性质及判定相似三角形的性质
求二次函数的解析式:最常用的方法是待定系数法,根据题目的特点,选择恰当的形式,一般,有如下几种情况: (1)已知抛物线上三点的坐标,一般选用一般式; (2)已知抛物线顶点或对称轴或最大(小)值,一般选用顶点式; (3)已知抛物线与x轴的两个交点的横坐标,一般选用两点式; (4)已知抛物线上纵坐标相同的两点,常选用顶点式。 二次函数的应用:(1)应用二次函数才解决实际问题的一般思路: 理解题意;建立数学模型;解决题目提出的问题。 (2)应用二次函数求实际问题中的最值: 即解二次函数最值应用题,设法把关于最值的实际问题转化为二次函数的最值问题,然后按求二次函数最值的方法求解。求最值时,要注意求得答案要符合实际问题。 二次函数的三种表达形式:①一般式:y=ax2+bx+c(a≠0,a、b、c为常数),顶点坐标为 [,]把三个点代入函数解析式得出一个三元一次方程组,就能解出a、b、c的值。
②顶点式:y=a(x-h)2+k(a≠0,a、h、k为常数),顶点坐标为对称轴为直线x=h,顶点的位置特征和图像的开口方向与函数y=ax2的图像相同,当x=h时,y最值=k。有时题目会指出让你用配方法把一般式化成顶点式。例:已知二次函数y的顶点(1,2)和另一任意点(3,10),求y的解析式。解:设y=a(x-1)2+2,把(3,10)代入上式,解得y=2(x-1)2+2。注意:与点在平面直角坐标系中的平移不同,二次函数平移后的顶点式中,h&0时,h越大,图像的对称轴离y轴越远,且在x轴正方向上,不能因h前是负号就简单地认为是向左平移。具体可分为下面几种情况:当h&0时,y=a(x-h)2的图象可由抛物线y=ax2向右平行移动h个单位得到;当h&0时,y=a(x-h)2的图象可由抛物线y=ax2向左平行移动|h|个单位得到;当h&0,k&0时,将抛物线y=ax2向右平行移动h个单位,再向上移动k个单位,就可以得到y=a(x-h)2+k的图象;当h&0,k&0时,将抛物线y=ax2向右平行移动h个单位,再向下移动|k|个单位可得到y=a(x-h)2+k的图象;当h&0,k&0时,将抛物线y=ax2向左平行移动|h|个单位,再向上移动k个单位可得到y=a(x-h)2+k的图象;当h&0,k&0时,将抛物线y=ax2向左平行移动|h|个单位,再向下移动|k|个单位可得到y=a(x-h)2+k的图象。
③交点式:y=a(x-x1)(x-x2) (a≠0) [仅限于与x轴即y=0有交点时的抛物线,即b2-4ac≥0] .已知抛物线与x轴即y=0有交点A(x1,0)和 B(x2,0),我们可设y=a(x-x1)(x-x2),然后把第三点代入x、y中便可求出a。由一般式变为交点式的步骤:二次函数∵x1+x2=-b/a, x1?x2=c/a(由韦达定理得),∴y=ax2+bx+c=a(x2+b/ax+c/a)=a[x2-(x1+x2)x+x1?x2]=a(x-x1)(x-x2).重要概念:a,b,c为常数,a≠0,且a决定函数的开口方向。a&0时,开口方向向上;a&0时,开口方向向下。a的绝对值可以决定开口大小。a的绝对值越大开口就越小,a的绝对值越小开口就越大。能灵活运用这三种方式求二次函数的解析式;能熟练地运用二次函数在几何领域中的应用;能熟练地运用二次函数解决实际问题。二次函数的其他表达形式:①牛顿插值公式:f(x)=f[x0]+f[x0,x1](x-x0)+f[x0,x1,x2](x-x0)(x-x1)+...f[x0,...xn](x-x0)...(x-xn-1)+Rn(x)由此可引导出交点式的系数a=y/(x·x)(y为截距) 二次函数表达式的右边通常为二次三项式。双根式y=a(x-x1)*(x-x2)若ax2+bx+c=0有两个实根x1,x2,则y=a(x-x1)(x-x2)此抛物线的对称轴为直线x=(x1+x2)/2。③三点式已知二次函数上三个点,(x1,f(x1))(x2,f(x2))(x3,f(x3))则f(x)=f(x3)(x-x1)(x-x2)/(x3-x1)(x3-x2)+f(x2)(x-x1)*(x-x3)/(x2-x1)(x2-x3)+f(x1)(x-x2)(x-x3)/(x1-x2)(x1-x3)与X轴交点的情况当△=b2-4ac&0时,函数图像与x轴有两个交点。(x1,0), (x2,0);当△=b2-4ac=0时,函数图像与x轴只有一个交点。(-b/2a,0)。Δ=b2-4ac&0时,抛物线与x轴没有交点。X的取值是虚数(x=-b±√b2-4ac的值的相反数,乘上虚数i,整个式子除以2a)二次函数解释式的求法:就一般式y=ax2+bx+c(其中a,b,c为常数,且a≠0)而言,其中含有三个待定的系数a ,b ,c.求二次函数的一般式时,必须要有三个独立的定量条件,来建立关于a ,b ,c 的方程,联立求解,再把求出的a ,b ,c 的值反代回原函数解析式,即可得到所求的二次函数解析式。
1.巧取交点式法:知识归纳:二次函数交点式:y=a(x-x1)(x-x2) (a≠0)x1,x2分别是抛物线与x轴两个交点的横坐标。已知抛物线与x轴两个交点的横坐标求二次函数解析式时,用交点式比较简便。①典型例题一:告诉抛物线与x轴的两个交点的横坐标,和第三个点,可求出函数的交点式。例:已知抛物线与x轴交点的横坐标为-2和1 ,且通过点(2,8),求二次函数的解析式。点拨:解设函数的解析式为y=a(x+2)(x-1),∵过点(2,8),∴8=a(2+2)(2-1)。解得a=2,∴抛物线的解析式为:y=2(x+2)(x-1),即y=2x2+2x-4。②典型例题二:告诉抛物线与x轴的两个交点之间的距离和对称轴,可利用抛物线的对称性求解。例:已知二次函数的顶点坐标为(3,-2),并且图象与x轴两交点间的距离为4,求二次函数的解析式。点拨:在已知抛物线与x轴两交点的距离和顶点坐标的情况下,问题比较容易解决.由顶点坐标为(3,-2)的条件,易知其对称轴为x=3,再利用抛物线的对称性,可知图象与x轴两交点的坐标分别为(1,0)和(5,0)。此时,可使用二次函数的交点式,得出函数解析式。
2.巧用顶点式:顶点式y=a(x-h)2+k(a≠0),其中(h,k)是抛物线的顶点。当已知抛物线顶点坐标或对称轴,或能够先求出抛物线顶点时,设顶点式解题十分简洁,因为其中只有一个未知数a。在此类问题中,常和对称轴,最大值或最小值结合起来命题。在应用题中,涉及到桥拱、隧道、弹道曲线、投篮等问题时,一般用顶点式方便.①典型例题一:告诉顶点坐标和另一个点的坐标,直接可以解出函数顶点式。例:已知抛物线的顶点坐标为(-1,-2),且通过点(1,10),求此二次函数的解析式。点拨:解∵顶点坐标为(-1,-2),故设二次函数解析式为y=a(x+1)2-2 (a≠0)。把点(1,10)代入上式,得10=a·(1+1)2-2。∴a=3。∴二次函数的解析式为y=3(x+1)2-2,即y=3x2+6x+1。②典型例题二:如果a&0,那么当 时,y有最小值且y最小=;如果a&0,那么,当时,y有最大值,且y最大=。告诉最大值或最小值,实际上也是告诉了顶点坐标,同样也可以求出顶点式。例:已知二次函数当x=4时有最小值-3,且它的图象与x轴两交点间的距离为6,求这个二次函数的解析式。点拨:析解∵二次函数当x=4时有最小值-3,∴顶点坐标为(4,-3),对称轴为直线x=4,抛物线开口向上。由于图象与x轴两交点间的距离为6,根据图象的对称性就可以得到图象与x轴两交点的坐标是(1,0)和(7,0)。∴抛物线的顶点为(4,-3)且过点(1,0)。故可设函数解析式为y=a(x-4)2-3。将(1,0)代入得0=a(1-4)2-3, 解得a=13.∴y=13(x-4)2-3,即y=13x2-83x+73。③典型例题三:告诉对称轴,相当于告诉了顶点的横坐标,综合其他条件,也可解出。例如:(1)已知二次函数的图象经过点A(3,-2)和B(1,0),且对称轴是直线x=3.求这个二次函数的解析式. (2)已知关于x的二次函数图象的对称轴是直线x=1,图象交y轴于点(0,2),且过点(-1,0),求这个二次函数的解析式. (3)已知抛物线的对称轴为直线x=2,且通过点(1,4)和点(5,0),求此抛物线的解析式. (4)二次函数的图象的对称轴x=-4,且过原点,它的顶点到x轴的距离为4,求此函数的解析式.④典型例题四:利用函数的顶点式,解图像的平移等问题非常方便。例:把抛物线y=ax2+bx+c的图像向右平移3 个单位, 再向下平移2 个单位, 所得图像的解析式是y=x2-3x+5, 则函数的解析式为_______。点拨:解先将y=x2-3x+5化为y=(x-32)2+5-94, 即y=(x-32)2+114。∵它是由抛物线的图像向右平移3 个单位, 再向下平移2 个单位得到的,∴原抛物线的解析式是y=(x-32+3)2+114+2=(x+32)2+194=x2+3x+7。直角三角形定义:有一个角为90°的三角形,叫做直角三角形。直角三角形可用Rt△表示,如直角三角形ABC写作Rt△ABC。 直角三角形性质:直角三角形是一种特殊的三角形,它除了具有一般三角形的性质外,具有一些特殊的性质:性质1:直角三角形两直角边a,b的平方和等于斜边c的平方。即。如图,∠BAC=90°,则AB2+AC2=BC2(勾股定理)性质2:在直角三角形中,两个锐角互余。如图,若∠BAC=90°,则∠B+∠C=90°性质3:在直角三角形中,斜边上的中线等于斜边的一半(即直角三角形的外心位于斜边的中点,外接圆半径R=C/2)。性质4:直角三角形的两直角边的乘积等于斜边与斜边上高的乘积。性质5:如图,Rt△ABC中,∠BAC=90°,AD是斜边BC上的高,则有射影定理如下:(1)(AD)2=BD·DC。(2)(AB)2=BD·BC。(3)(AC)2=CD·BC。性质6:在直角三角形中,如果有一个锐角等于30°,那么它所对的直角边等于斜边的一半。在直角三角形中,如果有一条直角边等于斜边的一半,那么这条直角边所对的锐角等于30°。性质7:如图,1/AB2+1/AC2=1/AD2性质8:直角三角形被斜边上的高分成的两个直角三角形和原三角形相似。性质9:直角三角形直角上的角平分线与斜边的交点D 则&&& BD:DC=AB:AC直角三角形的判定方法:判定1:定义,有一个角为90°的三角形是直角三角形。判定2:判定定理:以a、b、c为边的三角形是以c为斜边的直角三角形。如果三角形的三边a,b,c满足,那么这个三角形就是直角三角形。(勾股定理的逆定理)。判定3:若一个三角形30°内角所对的边是某一边的一半,则这个三角形是以这条长边为斜边的直角三角形。判定4:两个锐角互为余角(两角相加等于90°)的三角形是直角三角形。判定5:若两直线相交且它们的斜率之积互为负倒数,则两直线互相垂直。那么判定6:若在一个三角形中一边上的中线等于其所在边的一半,那么这个三角形为直角三角形。判定7:一个三角形30°角所对的边等于这个三角形斜边的一半,则这个三角形为直角三角形。(与判定3不同,此定理用于已知斜边的三角形。)相似三角形性质定理:(1)相似三角形的对应角相等。(2)相似三角形的对应边成比例。(3)相似三角形的对应高线的比,对应中线的比和对应角平分线的比都等于相似比。(4)相似三角形的周长比等于相似比。(5)相似三角形的面积比等于相似比的平方。(6)相似三角形内切圆、外接圆直径比和周长比都和相似比相同,内切圆、外接圆面积比是相似比的平方(7)若a/b =b/c,即b2=ac,b叫做a,c的比例中项(8)c/d=a/b 等同于ad=bc.(9)不必是在同一平面内的三角形里①相似三角形对应角相等,对应边成比例.②相似三角形对应高的比,对应中线的比和对应角平分线的比都等于相似比.③相似三角形周长的比等于相似比
定理推论:推论一:顶角或底角相等的两个等腰三角形相似。推论二:腰和底对应成比例的两个等腰三角形相似。推论三:有一个锐角相等的两个直角三角形相似。推论四:直角三角形被斜边上的高分成的两个直角三角形和原三角形都相似。推论五:如果一个三角形的两边和其中一边上的中线与另一个三角形的对应部分成比例,那么这两个三角形相似。推论六:如果一个三角形的两边和第三边上的中线与另一个三角形的对应部分成比例,那么这两个三角形相似。
发现相似题
与“如图,已知直线y=x+1与y轴交于点A,与x轴交于点D,抛物线y=x2+bx..”考查相似的试题有:
9064858940789286961951474215631957945 一次函数的应用 同步练习 一. 选择题 ⒈ 无论实数m取什么值.直线y=x+m与y=-x+5的交点都不能在 A.第一象限 B. 第二象限 C. 第三象限 ——精英家教网——
暑假天气热?在家里学北京名师课程,
5 一次函数的应用 同步练习 一. 选择题 ⒈ 无论实数m取什么值.直线y=x+m与y=-x+5的交点都不能在 A.第一象限 B. 第二象限 C. 第三象限 D第四象限 ⒉已知一次函数y=(-1-m2)x+3.则y随x的增大而 ( ) A. 增大 B.减小 C.与m有关 D. 无法确定 ⒊一次函数y=4x-5的图象与坐标轴围成的三角形的面积是 A. B. C. D. 25 ⒋已知一次函数y=kx+b.若当x增加3时.y减小2.则k的值是 ( ) A. B. C. D. ⒌若点(-4.y1).(2.y2)都在直线y=上.则y1与y2的大小关系是( ) A. y1&y2 B. y1=y2 C. y1&y2 D. 无法确定 二. 填空题 ⒍已知一次函数y=kx+b的图象经过点P.则当y的值增加1时.x的值将 . ⒎已知直线y=kx+b与y=2x+1平行.且经过点.则k= .b= . ⒏一次函数y=(m+4)x-5+2m.当m 时.y随x增大而增大,当m 时.图象经过原点,当m 时.图象不经过第一象限, ⒐已知直线y=kx+b经过点(.0)且与坐标轴所围成的三角形的面积是.则该直线的解析式为 . 三. 解答题 ⒑已知点Q与P(2.3)关于x轴对称.一个一次函数的图象经过点Q.且与y轴的交点M与原点距离为5.求这个一次函数的解析式. ⒒在同一直角坐标系中.画出一次函数y=-x+2与y=2x+2的图象.并求出这两条直线与x轴围成的三角形的面积与周长. ⒓如图表示一个正比例函数与一个一次函数的图象.它们交于点A(4.3).一次函数的图象与y轴交于点B.且OA=OB.求这两个函数的解析式. 【】
题目列表(包括答案和解析)
阅读理解九年级一班数学学习兴趣小组在解决下列问题中,发现该类问题不仅可以应用“三角形相似”知识解决问题,还可以“建立直角坐标系、应用一次函数”解决问题.请先阅读下列“建立直角坐标系、应用一次函数”解决问题的方法,然后再应用此方法解决后续问题.问题:如图(1),直立在点D处的标杆CD长3m,站立在点F处的观察者从点E处看到标杆顶C、旗杆顶A在一条直线上.已知BD=15m,FD=2m,EF=1.6m,求旗杆高AB.解:建立如图(2)所示的直角坐标系,则线段AE可看作一个一次函数的图象.由题意可得各点坐标为:点E(0,1.6),C(2,3),B(17,0),且所求的高度就为点A的纵坐标.设直线AE的函数关系式为y=kx+b.把E(0,1.6),C(2,3)代入得解得∴y=0.7x+1.6.∴当x=17时,y=0.7×17+1.6=13.5,即AB=13.5(m).解决问题请应用上述方法解决下列问题:如图(3),河对岸有一路灯杆AB,在灯光下,小明在点D处测得自己的影长DF=3m,BD=9m,沿BD方向到达点F处再测得自己的影长FG=4m.如果小明的身高为1.6m,求路灯杆AB的高度.
15、(1)学习和研究《反比例函数的图象与性质》《一次函数的图象与性质》时,用到的数学思想方法有、.(填2个即可)(2)学数学不仅仅是听课和解题,三年初中数学学习期间,教材中给你留下深刻印象的选学内容、数学活动、课题学习有、、(填3个即可).
阅读理解九年级一班数学学习兴趣小组在解决下列问题中,发现该类问题不仅可以应用“三角形相似”知识解决问题,还可以“建立直角坐标系、应用一次函数”解决问题.请先阅读下列“建立直角坐标系、应用一次函数”解决问题的方法,然后再应用此方法解决后续问题.问题:如图(1),直立在点D处的标杆CD长3m,站立在点F处的观察者从点E处看到标杆顶C、旗杆顶A在一条直线上.已知BD=15m,FD=2m,EF=1.6m,求旗杆高AB.解:建立如图(2)所示的直角坐标系,则线段AE可看作一个一次函数的图象.由题意可得各点坐标为:点E(0,1.6),C(2,3),B(17,0),且所求的高度就为点A的纵坐标.设直线AE的函数关系式为y=kx+b.把E(0,1.6),C(2,3)代入得解得∴y=0.7x+1.6.∴当x=17时,y=0.7&17+1.6=13.5,即AB=13.5(m).解决问题请应用上述方法解决下列问题:如图(3),河对岸有一路灯杆AB,在灯光下,小明在点D处测得自己的影长DF=3m,BD=9m,沿BD方向到达点F处再测得自己的影长FG=4m.如果小明的身高为1.6m,求路灯杆AB的高度.
阅读理解九年级一班数学学习兴趣小组在解决下列问题中,发现该类问题不仅可以应用“三角形相似”知识解决问题,还可以“建立直角坐标系、应用一次函数”解决问题.请先阅读下列“建立直角坐标系、应用一次函数”解决问题的方法,然后再应用此方法解决后续问题.问题:如图(1),直立在点D处的标杆CD长3m,站立在点F处的观察者从点E处看到标杆顶C、旗杆顶A在一条直线上.已知BD=15m,FD=2m,EF=1.6m,求旗杆高AB.解:建立如图(2)所示的直角坐标系,则线段AE可看作一个一次函数的图象.由题意可得各点坐标为:点E(0,1.6),C(2,3),B(17,0),且所求的高度就为点A的纵坐标.设直线AE的函数关系式为y=kx+b.把E(0,1.6),C(2,3)代入得解得∴y=0.7x+1.6.∴当x=17时,y=0.7×17+1.6=13.5,即AB=13.5(m).解决问题请应用上述方法解决下列问题:如图(3),河对岸有一路灯杆AB,在灯光下,小明在点D处测得自己的影长DF=3m,BD=9m,沿BD方向到达点F处再测得自己的影长FG=4m.如果小明的身高为1.6m,求路灯杆AB的高度.
(;镇海区模拟)为了保护环境,积极开发、应用新型清洁能源,国家决定对太阳能设备生产企业实行政府补贴,规定每销售一台太阳能热水器,政府补贴若干元给生产企业.经调查某公司每月出售太阳能热水器y(台)与补贴款额x(元)之间大致满足如图①所示的一次函数关系式.随着补贴款额x的不断增大,销售量也不断增加,但每台太阳能热水器的收益z(元)会相应降低且z与x之间也大致满足如图②所示的一次函数关系.(1)在政府未出台补贴措施前,该公司每月销售太阳能热水器的总收益额为多少元?(2)在政府补贴政策实施后,分别求出该公司每月销售太阳能热水器台数y、每台太阳能热水器的收益z关于政府补贴款额x之间的函数关系式;(3)要使该公司每月销售太阳能热水器的总收益w(元)最大,政府应将每台补贴款额x定为多少元?并求出总收益w的最大值.
精英家教网新版app上线啦!用app只需扫描书本条形码就能找到作业,家长给孩子检查作业更省心,同学们作业对答案更方便,扫描上方二维码立刻安装!
请输入姓名
请输入手机号& 二次函数综合题知识点 & “已知抛物线y=x2+bx+c与直线y=x...”习题详情
0位同学学习过此题,做题成功率0%
已知抛物线y=x2+bx+c与直线y=x+1有两个交点A、B.(1)当AB的中点落在y轴时,求c的取值范围;(2)当AB=2,求c的最小值,并写出c取最小值时抛物线的解析式;(3)设点P(t,T)在AB之间的一段抛物线上运动,S(t)表示△PAB的面积.①当AB=2,且抛物线与直线的一个交点在y轴时,求S(t)的最大值,以及此时点P的坐标;②当AB=m(正常数)时,S(t)是否仍有最大值,若存在,求出S(t)的最大值以及此时点P的坐标(t,T)满足的关系,若不存在说明理由.&
本题难度:一般
题型:解答题&|&来源:网络
分析与解答
习题“已知抛物线y=x2+bx+c与直线y=x+1有两个交点A、B.(1)当AB的中点落在y轴时,求c的取值范围;(2)当AB=2,求c的最小值,并写出c取最小值时抛物线的解析式;(3)设点P(t,T)在AB之间的一...”的分析与解答如下所示:
(1)由x2+bx+c=x+1,得x2+(b-1)x+c-1=0①.设交点A(x1,y1),B(x2,y2) (x1<x2).∵AB的中点落在y轴,∴A,B两点到y轴的距离相等,即A,B两点的横坐标互为相反数,∴x1+x2=0,故∴c<1;(3分)(2)∵,如图,过A作x轴的平行线,过B作y轴的平行线,它们交于G点,∵直线y=x+1与x轴的夹角为45&,∴△ABG为等腰直角三角形,而,AG==2,即|x1-x2|=2,∴(x1+x2)2-4x1x2=4,由(1)可知x1+x2=-(b-1),x1x2=c-1.代入上式得:(b-1)2-4(c-1)=4,∴;(3)①∵.又∵抛物线与直线的交点在y轴时,交点的横坐标为0,把x=0代入①,得c-1=0,∴c=1.∴这一交点为(0,1);∴;当b=-1时,y=x2-x+1,过P作PQ∥y轴交直线AB于Q,则有:P(t,t2-t+1),Q(t,t+1);∴PQ=t+1-(t2-t+1)=-t2+2t;∴S(t)=PQ&AB=-t2+2t=-(t-1)2+1;当t=1时,S(t)有最大值,且S(t)最大=1,此时P(1,1);当b=3时,y=x2+3x+1,同上可求得:S(t)=PQ&AB=-t2-2t=-(t+1)2+1;当t=-1时,S(t)有最大值,且S(t)最大=1,此时P(-1,-1);故当P点坐标为(1,1)或(-1,-1)时,S(t)最大,且最大值为1;②同(2)可得:(b-1)2-4(c-1)=m2,由题意知:c=1,则有:(b-1)2=m2,即b=1&m;当b=1+m时,y=x2+(1+m)x+1,∴P(t,t2+(1+m)t+1),Q(t,t+1);∴PQ=t+1-[t2+(1+m)t+1]=-t2-mt;∴S(t)=PQ&AB=(-t2-mt)&m=-m(t+)2+m3;∴当t=-时,S(t)最大=m3,此时P(-m,--+1);当b=1-m时,y=x2+(1-m)x+1,同上可求得:S(t)=-m(t-)2+m3;∴当t=m时,S(t)最大=m3,此时P(m,+m+1);故当P(-m,--+1)或(m,+m+1)时,S(t)有最大值,且最大值为m3.
找到答案了,赞一个
如发现试题中存在任何错误,请及时纠错告诉我们,谢谢你的支持!
已知抛物线y=x2+bx+c与直线y=x+1有两个交点A、B.(1)当AB的中点落在y轴时,求c的取值范围;(2)当AB=2,求c的最小值,并写出c取最小值时抛物线的解析式;(3)设点P(t,T)在A...
错误类型:
习题内容残缺不全
习题有文字标点错误
习题内容结构混乱
习题对应知识点不正确
分析解答残缺不全
分析解答有文字标点错误
分析解答结构混乱
习题类型错误
错误详情:
我的名号(最多30个字):
看完解答,记得给个难度评级哦!
经过分析,习题“已知抛物线y=x2+bx+c与直线y=x+1有两个交点A、B.(1)当AB的中点落在y轴时,求c的取值范围;(2)当AB=2,求c的最小值,并写出c取最小值时抛物线的解析式;(3)设点P(t,T)在AB之间的一...”主要考察你对“二次函数综合题”
等考点的理解。
因为篇幅有限,只列出部分考点,详细请访问。
二次函数综合题
(1)二次函数图象与其他函数图象相结合问题解决此类问题时,先根据给定的函数或函数图象判断出系数的符号,然后判断新的函数关系式中系数的符号,再根据系数与图象的位置关系判断出图象特征,则符合所有特征的图象即为正确选项.(2)二次函数与方程、几何知识的综合应用将函数知识与方程、几何知识有机地结合在一起.这类试题一般难度较大.解这类问题关键是善于将函数问题转化为方程问题,善于利用几何图形的有关性质、定理和二次函数的知识,并注意挖掘题目中的一些隐含条件.(3)二次函数在实际生活中的应用题从实际问题中分析变量之间的关系,建立二次函数模型.关键在于观察、分析、创建,建立直角坐标系下的二次函数图象,然后数形结合解决问题,需要我们注意的是自变量及函数的取值范围要使实际问题有意义.
与“已知抛物线y=x2+bx+c与直线y=x+1有两个交点A、B.(1)当AB的中点落在y轴时,求c的取值范围;(2)当AB=2,求c的最小值,并写出c取最小值时抛物线的解析式;(3)设点P(t,T)在AB之间的一...”相似的题目:
[2002o广州o模拟]直线y=x与抛物线y=x2-2的两个交点的坐标分别是(  )(2,2),(1,1)(2,2),(-1,-1)(-2,-2),(1,1)(-2,-2),(-l,-1)
[2015o乐乐课堂o练习]直线y=x+2与抛物线y=x2+2x的交点坐标是(  )(1,3)(-2,0)(1,3)或(-2,0)以上都不是
[2015o乐乐课堂o练习]直线y=2x-1与抛物线y=x2的交点坐标是(  )(0,0),(1,1)(1,1)(0,1),(1,0)(0,-1),(-1,0)
“已知抛物线y=x2+bx+c与直线y=x...”的最新评论
该知识点好题
1(2013o淄博)如图,Rt△OAB的顶点A(-2,4)在抛物线y=ax2上,将Rt△OAB绕点O顺时针旋转90°,得到△OCD,边CD与该抛物线交于点P,则点P的坐标为(  )
2二次函数y=x2-8x+15的图象与x轴相交于M,N两点,点P在该函数的图象上运动,能使△PMN的面积等于12的点P共有(  )
3如图,半圆A和半圆B均与y轴相切于O,其直径CD,EF均和x轴垂直,以O为顶点的两条抛物线分别经过点C,E和点D,F,则图中阴影部分面积是(  )
该知识点易错题
1(2012o南浔区二模)如图,点A(a,b)是抛物线y=12x2上一动点,OB⊥OA交抛物线于点B(c,d).当点A在抛物线上运动的过程中(点A不与坐标原点O重合),以下结论:①ac为定值;②ac=-bd;③△AOB的面积为定值;④直线AB必过一定点.正确的有(  )
2如图,已知抛物线P:y=ax2+bx+c(a≠0)与x轴交于A、B两点(点A在x轴的正半轴上),与y轴交于点C,矩形DEFG的一条边DE在线段AB上,顶点F、G分别在线段BC、AC上,抛物线P上部分点的横坐标对应的纵坐标如下:
x&…&-3&-2&1&2&…&y&…&-52&-4&-52&0&…&(1)求A、B、C三点的坐标;(2)若点D的坐标为(m,0),矩形DEFG的面积为S,求S与m的函数关系,并指出m的取值范围.
3如图,已知直线y=-12x+1交坐标轴于A、B两点,以线段AB为边向上作正方形ABCD,过A、D、C作抛物线L1.(1)请直接写出点C、D的坐标;(2)求抛物线L1的解析式;(3)若正方形以每秒√5个长度单位的速度沿射线AB下滑,直至顶点D落在x轴上时停止.设正方形在运动过程中落在x轴下方部分的面积为S.求S关于滑行时间t的函数关系式;(4)在(3)的条件下,抛物线L1与正方形一起平移,同时停止,得到抛物线L2.两抛物线的顶点分别为M、N,点&P是x轴上一动点,点Q是抛物线L1上一动点,是否存在这样的点P、Q,使得以M、N、P、Q为顶点的四边形为平行四边形?若存在,直接写出点P的坐标;若不存在,请说明理由.
欢迎来到乐乐题库,查看习题“已知抛物线y=x2+bx+c与直线y=x+1有两个交点A、B.(1)当AB的中点落在y轴时,求c的取值范围;(2)当AB=2,求c的最小值,并写出c取最小值时抛物线的解析式;(3)设点P(t,T)在AB之间的一段抛物线上运动,S(t)表示△PAB的面积.①当AB=2,且抛物线与直线的一个交点在y轴时,求S(t)的最大值,以及此时点P的坐标;②当AB=m(正常数)时,S(t)是否仍有最大值,若存在,求出S(t)的最大值以及此时点P的坐标(t,T)满足的关系,若不存在说明理由.”的答案、考点梳理,并查找与习题“已知抛物线y=x2+bx+c与直线y=x+1有两个交点A、B.(1)当AB的中点落在y轴时,求c的取值范围;(2)当AB=2,求c的最小值,并写出c取最小值时抛物线的解析式;(3)设点P(t,T)在AB之间的一段抛物线上运动,S(t)表示△PAB的面积.①当AB=2,且抛物线与直线的一个交点在y轴时,求S(t)的最大值,以及此时点P的坐标;②当AB=m(正常数)时,S(t)是否仍有最大值,若存在,求出S(t)的最大值以及此时点P的坐标(t,T)满足的关系,若不存在说明理由.”相似的习题。}

我要回帖

更多关于 证明直线与平面平行 的文章

更多推荐

版权声明:文章内容来源于网络,版权归原作者所有,如有侵权请点击这里与我们联系,我们将及时删除。

点击添加站长微信