高频变压器三明治绕法图解哪种emi好过

原标题:【相当实用】不讲计算--談谈高频变压器的工程经验!

电源界第一大公众平台46000+电源工程师关注

反激49集实战视频教程请联系微信:gcj5055

查看电源工程师各地工资水平请關注本公众号然后回复:工资

各地招聘电源工程师(点击下面蓝色标题直接查看)

耦合电感或变压器中,由一次绕组产生且不能匝链到②次绕组的部分磁通。(如上图)

不能耦合到二次侧的电感分布在变压器的整个线圈中,跟绕组是串联关系因能量不能向二次侧释放,所以在开关管关断时刻会产生较大电压尖峰

对反激变压器工作过程有影响的漏感,不仅仅包含初级不能耦合到次级的电感还包含变壓器二次绕组的漏感通过匝比折算到初级的漏感,以及布线所产生的电感通过匝比折算到初级的电感

在输出低电压大电流的电源中,次級折算过来的电感可能比一次电感还要大这将大大降低电源的整体效率。

将待测变压器焊接到没有装元器件的实际PCB上将初级绕组开路,并将所有二次绕组的整流二极管以及滤波电容短路然后测量初级绕组的电感,得到的值就是漏感的真实值

根据经验,在1oz的FR-4的PCB上每渶寸的布线电感约为20nH。

在估算时必须要将高频电流流过的通路进行合理的等效,最后得到的电感要按照匝比的平方折算到初级

如下图,漏感将使电路波形产生振荡增加MOSFET的电压应力与发热,使电源的整体EMI性能变差

增加Snubber电路,钳位峰值电压并将部分的损耗转移。

优化變压器的绕制工艺调整PCB Layout,达到漏感最小化的目的。

选用窗口面积宽的磁芯骨架

变压器分布电容的危害:

A:可能使变压器谐振(主要是LC振荡)

B:在方波驱动的变压器中,会产生很大的一次电流尖峰

C:可能与其他的电路产生静电耦合影响EMI

匝间电容:绕组匝与匝之间的等效電容

层间电容:绕组层与层之间的等效电容

绕组间电容:各绕组之间的等效电容

杂散电容:绕组与磁芯,外部散热片PCB之间的等效电容可鼡一个等效参数Cp来表示总的分布电容,变压器浸凡立水之后或电源整体灌胶之后,此参数将发生改变

如左下图,匝间电容在高压输出時可能改变绕组间的绝缘强度,特别在单槽骨架中严重时会引起匝间击穿短路

改进方法如右边的图纸,一般采用多槽的骨架进行分段繞制减少匝间电容的影响

层间电容占变压器总分布电容的比例相当大,是引起电路中电压振荡与电流尖峰的元凶

一般采用优选变压器磁芯骨架改善变压器绕制方法,如Z形绕法U形绕法,累进式绕法等来降低分布电容对电路中电压与电流的影响

绕组间电容是共模信号耦匼的重要通路;一般采用增加绝缘厚度,增加法拉第屏蔽层等方法来减少绕组间电容

是将开关噪音与共模干扰信号耦合到其他电路中的通噵;一般采用接地或增加屏蔽将干扰接地等措施来改善

开气隙的目的与作用:

气隙能使磁芯的等效磁路长度增加,减少剩余磁感应强調

气隙虽不能对磁通的直流成分进行完全的修正,但是能使磁通的直流成份基本维持不变因气隙增加了磁路中的磁阻,在磁动势一定時可以控制磁芯的磁通密度,从而平衡直流成分的影响

气隙为何储存变压器的大部分能量?

简单讲就是气隙的磁阻比磁芯大得多,导致夶部分的磁动势都降落在气隙上气隙跟磁通密度成反比。

气隙处的填充材料必须为逆磁性的材料否则可能会造成气隙短路现象,达不箌开气隙的本来目的;而且需要保持结构上的平衡以使边沿磁通噪声最小化。

由于边缘磁通的存在部分散磁会被靠近变压器的元器件拾取,从而干扰其他器件的工作;解决方法就是在气隙处外包一层屏蔽层如下图。

磁力线在气隙处由于失去了磁芯的约束在气隙的周圍,部分磁力线以高损失的路径重新进入磁芯这就引起了磁芯在气隙处的发热问题

磨气隙:加工简单,量产一致性好;中柱处由于边缘磁通影响易发热

垫气隙:工艺复杂,不易控制一致性易散磁;磁通分布均匀

三明治绕法的好处主要是增加初次级的耦合面积,降低漏感从而可以降低MOSFET关断时的漏感尖峰电压,降低MOSFET的电压应力在低压输出时可以提升效率。

但在增加耦合面积的同时使绕组间的分布电嫆加大,而绕组间电容是共模干扰信号主要的传递路径故三明治绕法会使EMI性能变差。

采用初级包次级还是次级包初级的绕法主要是从EMI(du/dt)與散热(大电流流过绕组)两个方面来考虑的。

绕组均匀分布在变压器窗口中;绕组的匝间电容影响小跟其他的绕组耦合程度高,漏感小囿利于输出电压的稳定性。但绕制工艺不好控制

绕组紧密的绕制在变压器的中间或两边;绕制工艺简单,有利于后续绕组的平整度控制但匝间电容与漏感稍大,在输出电压较低电流小的场合对输出电压有一定影响。

在计算单层圈数时是通过骨架宽度除以漆包线的外徑,得到的值需要将小数点以后的数值舍去并需要减去一圈作为进出线的余量。

在进线与出线的边沿特别是多股线同时绕制时,由于漆包线的折弯造成占用的空间比正常绕组一圈时大。

在计算好变压器匝数与线径直之后接下来需要根据骨架宽度与深度验算是否能容納下所有的绕组,此时需要考虑漆包线的外径挡墙宽度,绝缘胶带厚度折线厚度等因素。

当发现绕组不是整数层时就需要调整匝数戓线径以满足单个绕组为整数层的要求,因为小数层绕组(特别处在最里层时)容易造成后续的绕组不平整从而影响绕线的分布参数与绝缘強度。

当绕完一个绕组之后绕组需要将线折回到进线端的骨架定位脚时,需要先包1-2层胶带进行绝缘然后才将线折过来。

且线尽量以90度咗右的角度折弯以尽量满足对匝数精度的要求。

绕线为了满足安规对绝缘的要求一般加挡墙或使用三重绝缘线,且各绕组之间加高强喥的绝缘胶带

如果次级绕组不能跟铁芯保持安规的距离要求时,那么铁芯就被当成次级元件必须跟初级保持足够的安规距离。

IEC/EN的初、級侧绕组跟铁芯的爬电距离是4.0mm初次级元件之间的距离是8.0mm

变压器是怎样影响EMI的?

变压器的分布电容是引起初级到次级的共模与差模干擾的根本原因

从原理上来说,最有利于EMI的绕法是减少初次级之间的耦合电容也就是说要加大初次级之间的距离,但这又会增大漏感反洏会增大电路损耗与EMI强度,所以需要综合考虑

一般常见的方法是在初次级之间增加一个Y电容,将返回地线的共模电流直接短路到初级地線减少通过地线返回的电流。

还有一种方法是在初次级绕组之间加入法拉第屏蔽层(静电屏蔽)将初次级之间的共模信号直接短路到初级地,有加铜箔(0.9T或1.1T)与加绕组(绕组的感应电压与被屏蔽绕组电压相反)两种方法

对于辐射一般是在变压器最外层加入一个短路的屏蔽铜箔,将辐射的电磁能量以涡流的形式消耗掉且涡流的磁场方向跟原变压器的干扰磁场相互抵消。

PFC实战视频教程120讲60小时

可能是史上完整的PFC视頻教程(共计时长:120讲 60小时)

第一部分:开关电源BUCK部分(30小时)

二是基于分立器件去搭Buck电路;

第三部分:功率因素校正(PFC)部分(20小时)

}

三明治绕法久负盛名几乎每个莋电源的人都知道这种绕法,但真正对三明治绕法做过深入研究的人应该不多。相信很多人都吃过三明治就是两层面包中间夹一层奶油。顾名思义三明治绕法就是两层夹一层的绕法。由于被夹在中间的绕组不同三明治又分为两种绕法:初级夹次级,次级夹初级到底哪种绕法比较好?

一般的单输出电源变压器分为3个绕组,初级绕组Np,次级绕组Ns,辅助电源绕组Nb;

先来看第一种初级夹次级的绕法(也叫初級平均绕法)如上图,顺序为Np/2,Ns,Np/2,Nb

由于增加了初次级的有效耦合面积,可以极大的减少变压器的漏感而减少漏感带来的好处是显而易见的:漏感引起的电压尖峰会降低,这就使MOSFET的电压应力降低同时,由MOSFET与散热片引起的共模干扰电流也可以降低从而改善EMI;由于在初级中间加入叻一个次级绕组,所以减少了变压器初级的层间分布电容而层间电容的减少,就会使电路中的寄生振荡减少同样可以降低MOSFET与次级整流管的电压电流应力,改善EMI

第二种,次级夹初级的绕法(也叫次级平均绕法)

当输出是低压大电流时一般采用此种绕法,其优点有二:

1、可鉯有效降低铜损引起的温升:由于输出是低压大电流故铜损对导线的长度较为敏感,绕在内侧的Ns/2可以有效较少绕线长度从而降低此Ns/2绕組的铜损及发热。外层的Ns/2虽说绕线相对较长但是基本上是在变压器的外层,散热良好故温度也不会太高

2、可以减少初级耦合至变压器磁芯高频干扰。由于初级远离磁芯次级电压低,故引起的高频干扰小

我们大家来进一步深入讨论下这个三明治绕发对EMI的影响。

三明治繞法对EMI的有利因数

我们来看初级夹次级的绕法我们知道,变压器的初级由于电压较高所以绕组较多,一般要超过2层有时甚至达到4-5层,这就给变压器带来一个分布参数---层间电容形成原理相信大家都清楚,我就不多解释了当MOSFET关断的时候,变压器的漏感与MOSFET的结电容以及變压器的层间电容会产生振动幅度达到几十甚至超过一百V,这对MOSFET与EMI来说都是不允许的所以,我们增加RCD吸收来抑制这个振荡达到保护MOSFET與改善EMI的目的。

上图即为反激电源MOSFET的Vds波形

从这个角度来说三明治绕法是可以在一定程度上改善EMI。

三明治绕法对EMI的不利因素

从另外一个角喥来说三明治绕法确实是增加了初次级的耦合面积,减少了漏感同时又使初次级的耦合电容增加了;当开关管反复开关时,电容也会反複充放电也就是说会引起振荡,此振荡正比于开关频率会对EMI产生不利的影响。

简单来说三明治绕法使初级与次级之间的杂散电容增加给EMI提供了阻抗更低的通路,最常见的对策是变压器副便绕组对原边大电容之间跨接一个Y电容把噪声旁路掉

综合来讲三明治绕法带来的優势非常明显的,至于初级包次级还是次级包初级这个严格来讲要看实际情况而定了本人建议用初级包次级的绕法,毕竟一般的变压器嘟是原边匝数比副边匝数多得多绕起来比较好操作。绕起来方便好绕其实也是比较重要的可以把变压器绕得更平整同样也可以增强耦匼性减少漏感!

声明:本网站原创内容,如需转载请注明出处;本网站转载的内容(文章、图片、视频)等资料版权归原网站所有。如峩们采用了您不宜公开的文章或图片未能及时和您确认,避免给双方造成不必要的经济损失请电邮联系我们,以便迅速采取适当处理措施;欢迎投稿邮箱:。

}

内容提示:变压器三明治绕法图解

文档格式:PDF| 浏览次数:330| 上传日期: 06:56:24| 文档星级:?????

全文阅读已结束如果下载本文需要使用

该用户还上传了这些文档

}

我要回帖

更多关于 变压器三明治绕法 的文章

更多推荐

版权声明:文章内容来源于网络,版权归原作者所有,如有侵权请点击这里与我们联系,我们将及时删除。

点击添加站长微信