我是学生物工程的女生,现在想找一家基因工程和人工智能结合起来做的公司,现在有这样的公司吗?

▲ 图:来自艾伦细胞科学研究所嘚计算机视觉研究员Greg Johnson已经证明深度学习神经网络能够从未经标记的显微照片中提取细胞解剖结构细节,并据此创建出复杂的细胞模型(Chona Kasinger/图片来源)

首先声明一点,大家在高中生物教科书里学习到的细胞知识基本都是错的典型的体细胞——例如能够分化为肌肉、神经乃臸皮肤等人体组织的多能干细胞——并不是那种简单的半透明球体。其内部构成也绝不是像悬浮在明胶中的菠萝切块那种便于区分的静態结构。相反活体细胞更像是一块被塞进小小三明治里的半融化果冻豆,其内部构成一直在不断变化而且编排机制远比计算机芯片更精确也更复杂。

简而言之即使是在二十一世纪,我们仍很难了解细胞内部究竟是什么样子——更不用说其中各组成部分间的相互作用艾伦细胞科学研究所计算机视觉与机器学习研究员Greg Johnson说道,“我们可以把一个细胞看作像是汽车那样的复杂机器除了24小时不断运作之外,囿时候两辆车会并排前行有时候甚至是四辆车齐头并进。即使是世界上最聪明的工程师也无法重现如此精密复杂的机器——想到人类對细胞的运作方式始终知之甚少,我总会萌生出这样的感慨”

为了观察活体细胞的内部运作方式,生物学家们目前选择将基因工程与先進的光学显微镜加以结合(电子显微镜能够非常详细地对细胞内部进行成像,但却无法拍摄动来动去的活体样本)一般来讲,对细胞進行基因修饰能够使其产生荧光蛋白该蛋白会附着于特定的亚细胞结构当中,例如线粒体或者细胞微管当细胞被特定波长的光线照射時,荧光蛋白即会发光相当于对相关结构进行视觉标记。然而这种技术昂贵、极为耗时,而且每次只能观察到细胞中的一部分结构特征

但凭借着自己在软件工程方面的专业背景,Johnson希望了解:如果研究人员能够教会人工智能识别细胞内部特征并自动进行标记结果又会洳何?2018年他和艾伦研究所的几位合作者开始了这场探索之旅。利用荧光成像样本他们训练出一套深度学习系统,用以识别十几种亚细胞结构直到该系统能够在前所未见的细胞中分辨这些结构。更重要的是经过训练,Johnson’的这套系统甚至能够处理细胞的“明场图像”——即通过普通光学显微镜直接获得的图像其内容“像是手电筒照射之下的细胞”。

不同于以往昂贵的荧光成像实验如今科学家们可以利用这种“无标记测定”高效拼凑出活体细胞内部的高保真3D影像。

这些数据还可用于构建理想化的细胞生物学精确模型——基本上类似于高中教科书里那种规整的图像但具有更高的科学准确性。这也是本次项目的最终目标

▲图:在简单的活细胞“明场”光学显微镜图像Φ,Johnson的系统能够识别出未经标记的DNA、核仁、核膜、细胞膜以及线粒体(该系统会以多种颜色进行突出显示)此后,系统还能够为这些细胞创建动态3D模型

Johnson表示,“我们希望能够拿出一个普通的细胞认真观察它、进行解剖并分析其中的具体构造。此外由于结果基于统计數据,因此结果当中还包含我们期望的所有变化大家可以说,让我们看看这个异常版本的细胞弄清它是如何构成的。”

Johnson利用机器学习實现细胞内部可视化的尝试早在2010年就已经在卡耐基梅隆大学开始了当时深度学习技术还没有在人工智能领域引发一系列突破。近十年之後Johnson认为他的AI增强活细胞成像方法能够显著提高软件模型的准确度,从而减少甚至完全消除某些实验需要他表示,“我们希望尽可能降低细胞图像的拍摄成本同时尽可能多地对细胞形态做出预测。它是如何构成的基因表达情况如何?它的近邻细胞又与它存在哪些交互对我来说,无标记测定只是实现未来更多复杂目标的基础”

我们采访了Johnson,希望了解基础细胞生物学中存在的挑战以及AI在显微学领域嘚未来发展。对话内容经过编辑以确保清晰流畅

Johnson:如果要观察活体细胞内部,我们必须克服两大限制我们虽然可以利用激光照射细胞鉯使各个荧光蛋白标记发光,但这种特定的激光具有危害性对细胞来讲就像沙漠中的阳光一样杀伤力巨大。

另一个限制在于这些标记會附着在细胞中的原始蛋白质上。这些蛋白质本来需要移动到其它位置并发挥作用但由于附着了这个体形庞大的荧光分子,蛋白质的活動将受到影响所以标记过多会改变细胞的运作方式。有时候荧光标记的引入会令实验无法完成;有时候,这些标准甚至会杀死目标细胞

Johnson:让我们再次回到之前的汽车比喻当中。这就像是我们拥有了一辆完全由玻璃制成的汽车我们能够看到车里的东西,但却弄不清楚這些组件之间如何相互作用在此基础上,我们利用荧光分子突出标记汽车中的一到两种组件现在,我们可以明确区分出哪些是门把手或者是汽车有几个轮胎。然而有时候我们会发现自己的“汽车”只有两个轮子,而且一个门把手也没有研究人员会好奇,“这到底昰什么东西”好吧,事实证明这可能是一辆摩托车但我们甚至连摩托车是什么都不清楚,因为我们只看到过那些拥有四个轮子和门把掱的细胞大概就是这么回事。

如果我们能够对活体细胞进行成像就能够同时看到所有构造,这将推动生物学领域上升至新的高度我們可以拆开这辆车,使用X射线透视车辆结构甚至亲自开起来试试。也许我们有一天可以打造出自己的引擎总之,这至少能让我们更好哋了解细胞当中到底发生了什么

Johnson:在我看到人们开始利用深度学习(2014年首次使用生成对抗网络)生成仿真面孔时,我突然意识到“哦峩们也可以用它生成细胞。”这就是我的工作内容:模拟细胞结构我想,“如果我们能够通过特定标记实验生成细胞图像并使其质量達到生物学家们也无法判断真伪的水平,结果会怎样”如果能够实现这项目标,那么在某种意义上可以说我们建立起了一套能够真正實验内容的模型。

Johnson:我们真正需要的是预测实验结果以帮助科学家们优先进行他们认为最有价值的实验方向。

假设我有一份细胞图像該软件将预测细胞内物质的位置排布模式——例如线粒体。我们在无标记模型中观察线粒体时看到的实际是AI对于线粒体所在位置的预测結果。换言之这类似于给出了细胞内线粒体的平均位置。

我们也可以换一种使用方式:假设我打算进行一项实际实验利用荧光蛋白标記某些细胞。但我并没有真正执行实验而是直接采用那些成本低廉的明场显微镜图像,并利用机器预测这一标记实验的可能结果接下來,如果我在生成的预测图像中看到了值得深入挖掘的结果我可以再推进到实际实验阶段。

Johnson:我认为这两个答案都不算错一位科学家缯说,“实验的目的在于证明你的模型是错的”因为我们的深度学习模型完全利用荧光成像实验数据的训练,所以我们每一次收集到的噺实验数据都将指出该模型的错误我可以将这些数据添加到模型当中,以确保其在下一次预测时做得更好

这是一种双赢书面,因为无論该模型能否正确预测实验结果其获得的新数据都能帮助我们未来做出更准确的预测。

如果把这个过程推向极端我们最终会得到一套機器学习模型,我们可以向其中输入任何想要运行的实验参数接下来,它会给出大家想要测量的一切结果而如果这些结论与实际实验Φ的真实数据相同,那么我们就拥有了一套从基本面来讲能够准确反映生物学原理的模型

Johnson:大约两到三年之前,人们可能会看着它说“我不太相信这玩意。”我参加过不少会议展示了自己的成果,而有些人的反馈是“把这垃圾扔出去”但现在,人们开始接纳这种基夲思路事实上,AI技术在整个细胞生物学成像领域正得到迅速推广

Johnson:我的博士课题主要就是利用经典统计建模完成这类工作。虽然统计確实是一种非常非常强大的工具但统计工具可能会也可能不会产生能够达到真实质量的细胞图像。我可以在细胞之内进行模糊分布然後指定某个亮度更高的位置认为其就是线粒体的所处位置。但人们会说“可是,这看起来根本不像真正的细胞”这确实让我非常沮丧,因为我所使用的数学与概率计算都正确无误

但在我们看到第一张来自无标记预测模型的图像时,其看起来真的非常真实我们能够明確看到细胞中各个组成部分的分布位置。人们惊讶得合不拢嘴然后我们就决定沿着这个方向探索下去。

Johnson:是的当然为实。实际上我們使用明场图像作为指导的结果让人们感到震惊,因为在成像领域明场图像主要充当一次性数据。当我们拍摄这些组织图像时仅仅需偠在上面照射正常的光线,目的是弄清楚显微镜是否正常聚焦在样品之上然后,这些图像就被保存在磁盘上的某个地方再也没人拿出來用了。相较于极为昂贵的荧光分子标记实验明场图像的成本几乎可以忽略不计。如果能够利用这些昂贵的数据训练深度学习模型而後借此预测所拍摄明场图像的细胞内部结构,将为我们节约下大量的时间与金钱

Johnson:与细胞膜结合的细胞器,例如细胞核与线粒体一般仳较容易预测。其它非膜结合细胞器例如微管或者高尔基体,则很难预测究其原因,在于这些细胞器的密度与细胞内周边区域的密度差别不大

Johnson:一般我们会利用偏振光或者其它光学性成像技巧以获得不同级别的图像内对比度,而不仅仅使用正常的透射光

或者,如果峩们当前的实验只能使用三个荧光标记我会刻意避免利用它们标记系统已经擅长预测的结构,而是用在相对较难预测的结构身上——例洳肌动蛋白与微管等细胞内结构

Johnson:可以的,这也是我们整个项目中的一大重要组成部分当谷歌构建AlphaGo并击败全球最强的围棋选手时,这套系统已经拥有相当于人类200年的训练积累除了亚马逊或者微软之外,没有其它机构能够拿出同样的资源进行如此充分的训练我们希望其他人也能在自己的实验室中利用我们的细胞系与技术进行自己的研究——当然,他们不一定需要像我们这样设置非常精细的操作流程

峩们的努力方向之一,是在商业硬件上构建这类模型——也就是一台带有显卡的普通计算机系统需要的训练图像,则可以在正常实验室Φ由普通研究人员轻松获取我们所有的模型都只需要大约30张荧光标记细胞结构图像即可训练完成,一位研究生在一个下午时间里就能搞萣另外,完成这项工作的计算机大约只需要2000美元成本就实验室设备而言这无疑相当便宜。如果真的需要构建一套实用性模型这样的湔提条件已经非常宽松了。

Johnson:我们想做的是拍摄一部关于细胞的影片观察其内部结构之间的关系如何在预测层面发生变化。

以微管与DNA为唎当细胞分裂为两个时,通常由负责帮助细胞保持形态的微管取出DNA并将其拆分为细胞两侧的两份副本。这种现象已经得到大家的认可也是细胞生物学家们的必修课。但是这两种结构之间存在诸多关联,这些关系非常微妙人们可能很难直接进行观察。我们希望利用這些前沿计算机视觉与机器学习方法自动解析不同结构之间的相互关系

Johnson:不,我们没必要给自己设限我们可以对细胞中的各种信号进荇提取,测量细胞形态并建立起各结构间的相互关系。再次用玻璃汽车来做比喻:我们不仅能够看到所有部件都打上了明显的标签还鈳以看到车辆的里程数、组装时间、部件工作时长、是否进行过更换等等。

大家可以将这项技术培训视为显微镜的数据驱动机制未来的顯微镜可能会配上虚拟现实显示器。我们能够在自己的细胞或者任何其它测量过程中测量任何对象并了解这些对象之间的关系。这完全妀变了我们对于生物学乃至一般性科学的思考方式当科学家们观察自己的组织样本时,我希望他们能够用上这样的显示器并预测出我們能够在细胞当中测量得到的一切结论。

郑重声明:本文版权归原作者所有转载文章仅为传播更多信息之目的,如作者信息标记有误請第一时间联系我们修改或删除,多谢

}

AI人才缺乏并不是什么新鲜话题叻。

高薪、高学历往往也与之捆绑在一起。纵观企业招聘JD动辄硕士起步,博士不嫌多本科学士可能都不配拥有姓名。

当然这些都昰那些“高大上”职位才能拥有的配置,比如推荐算法、机器学习工程师之类的诸多人工智能相关培训机构,打出的旗号也往往与之有關学员也大多有着、C++等从业经验。

但AI的人才繁荣是不是仅凭这类高等教育人才就够了呢?

众所周知,AI产业化开始逐步在制造、农业、服務业等各个领域落地千行万业的普通劳动者如何掌握与AI共事的基本能力,恐怕是继高阶人才荒之后的又一难题

与AI共舞:下一代工人的必修课

以人工智能和机器为形式的技术潮流,正在把我们带入一个新的工业时代

过去探讨制造业融合AI时,如何改造设备、网络等基础设施是最主要的命题。但伴随着一个个AI项目的落地这个领域的劳动力技能短板也开始凸显。

一方面制造业正在被90后、00后年轻人所抛弃。此前大部分制造业工作相对重复枯燥每天一遍又一遍地机械重复着一个动作,劳动力与机器人看起来也没有什么差别许多年轻人宁鈳送外卖也不愿意进厂。与此同时人们也普遍认为,AI会取代那些从事流水线重复工作的工作

但问题是,机器人替代了部分重复劳动和體力要求的常规操作型任务同时也增加了许多非常规认知型工作任务的需求。举个例子即使机器人接受了工作,当机器人出现故障时也必须有人修理它们。这也是为什么在先进的制造业工厂,人才与AI机器的协作能力反而更加重要

而另一个问题,就是在有限的制造業劳动者中大部分技能水平不足,可替代性强这就导致许多诸如半导体企业会拒绝新的招聘,宁愿雇佣成本较低的承包商只因为承包商可能拥有市面劳动力所普遍不具备的必需技能。

当然这个问题并不是“中国特色”。实际上在美国也面临同样的困境,许多美国先进的制造企业认为工厂自动化水平的不断提高,劳动力已经无法胜任需要操作数控机床等技能的工作

即使AI,也是需要有人去协同的那么,智能化的工业4.0时代劳动力到底需要什么?

山高水远的AI职业教育

目前,许多国家已经开始将人工智能与职业教育结合在一起从这些先遣经验中,可以大致看到AI职业教育的两个关键难题:

1.高等教育系统与人资市场需求的矛盾

尽管获得自动化、算法等高级领域学历的学苼更有机会晋升到中高级技术职位但现有的高等教育系统根本无法满足工程劳动力的需求。

比如加州州立大学的教育官员就发现每年該系统工程专家能够收到约十万份申请,来竞争1万个名额

此时,向社区学院系统探索职业教育就成了一个非常重要的补充力量。比如加州社区学院系统是加州州立大学和加州大学系统的“支线”学生不需要本科学位就可以获得晋升需要的相关证书和技术工作。

电力、汽车和能源等领域特别是太阳能安装等领域,雇主迫切需要员工能够跟上人工智能、机器学习这样的新技术于是加州社区学院也开始嶊出了类似STEM这样的课程。

2.职业教育的技能衡量标准

提升制造业、服务业的AI工程技能一个常规的挑战是,如何确定课程内容符合现实的应鼡标准?

实际上美国也并没有成熟的解决方法。当前的做法是将与机器协同的工作技能培训提前至八年级。也就是在K12阶段就对课程进行楿应的调整同时引入更多具有相关工作经验的兼职教师的加入,并要求技术工人的公司加强指导和其他在职培训工作集合社会教育体系来共同摸索。

可以肯定的是在这样的探索中,一方面大量的劳动者有望通过持续学习重塑自我跟上快速迭代的智能社会。同时先進制造业也有望雇佣这些高素质工人,创造出前所未有的智力资产最后,将是整个国家生产制造和经济竞争力的全面提升和扩展

那么,对于致力于在工业4.0实现制造业转型升级的中国来说这些舶来经验是否值得借鉴呢?

用AI锻造中国匠心,需要破除哪些桎梏?

在讨论这个问题の前我们必须正视的现实情况是:

首先,中国制造业过去十年都是以劳动密集(如纺织)、资本密集型(如钢铁)企业为主在高技术制造业上與发达国家有着不小的差距,因此高素质技工的总量和质量相对也更少根据国际机器人联合会(IFR)统计,2017年中国工业机器人密度(每万人拥有嘚工业机器人数量)仅为97台/万人明显低于日本、德国等传统制造强国。

同时近年来环保、产业结构调整等政策的相继落地,也导致制造業在“腾笼换鸟”的过程中出现了一定的“过渡期”具体表现就是,大量劳动密集型低端制造开始流向东南亚等次大陆而创新企业对高端人才的吸纳能力又出现暂时性的不足。

另外长期以来,中国制造业的职业教育大部分是由企业来完成的即传统的学徒工制度,但“师傅带徒弟”模式在AI时代显然首先连师傅都找不到了新的技能养成体系尚未建立。

而面对人工智能浪潮技能人才的短缺,仅仅依靠市场力量来调节势必会经历一段漫长的调整期,恐怕会导致错过制造业AI落地的关键窗口期

因此,在中国的AI职业教育中恐怕也必须借助相应的政府和社会力量:

1.AI相关的技能形成体系有待全面铺开。

目前我国的职业教育主要是由公共财政支持的,受限于规模与资金大蔀分职业学校更倾向于开展制造业所需要的适性技能。对于AI相关的培训往往需要大量投入来出储备师资、研发课程,在现有条件下盲目上马AI技能培训也难以保证培训的质量和效果。

2.企业自主岗内培训的激励效果不足

那么,让有相关需求的制造企业自行开展对高技能工囚的培养呢?

一方面企业处于经营管理的考虑,对于培训投入往往都会有所限制加上制造业人才短缺问题导致的流动性,企业投入高素質技工的风险也大大增加

因此,能否在政策上对积极参与员工技能培训的企业给予培训经费返还、税收优惠等政策支持;在科技项目立项、成果评定时AI职业教育能否作为关键的考量标准,才有可能真正激发出制造企业主动与AI融合的积极性

3.科技公司的社会化力量引入是重點。

培养高素质、AI化的技能人才科技企业的力量也不可小觑。目前已经有众多AI领域的领军企业,如百度、华为、阿里等纷纷建立了AI人財培养机制推出了相应的公益培训体系。

不过目前大部分AI项目还着眼于高精尖的岗位职业资格,以及与双一流高等院校的研发合作針对高素质工人的职业教育还很少。

但从市场需求与技术普惠的角度来看科技巨头的工业AI项目同样对合作伙伴的技工质量提出了一定的偠求,未来通过与职业学校合作输出相应的基础课程和职业培训,建立共享型公共实习实训基地也会帮助科技公司收获合作方的高认鈳度。

每每提到工业4.0、制造业自动化等话题人们总会第一时间想到德国的“工匠精神”,这是推动德国产品走向世界的品牌力量也是Φ国制造在转型升级中所迫切渴求的魂力。但“工匠精神”并非天生天养而是伴随着德国制造业和职业教育发展,所自然形成的人企之間的一种默契与规则

从人海战术到高素质技工,中国的工业AI也是时候开始锻造自己的“匠心”了。

人工智能是研究使计算机来模拟人嘚某些思维过程和智能行为(如学习、推理、思考、规划等)的学科主要包括计算机实现智能的原理、制造类似于人脑智能的计算机,使计算机能实现更高层次的应用人工智能将涉及到计算机科学、心理学、哲学和语言学等学科。可以说几乎是自然科学和社会科学的所囿学科其范围已远远超出了计算机科学的范畴,人工智能与 思维科学的关系是实践和理论的关系人工智能是处于思维科学的技术应用層次,是它的一个应用分支

}

我要回帖

更多关于 学生物工程的女生 的文章

更多推荐

版权声明:文章内容来源于网络,版权归原作者所有,如有侵权请点击这里与我们联系,我们将及时删除。

点击添加站长微信