6.3克拉金刚石导电吗值钱嘛?

华北克拉通东部含金刚石金伯利岩的侵位年龄和Sr-Nd-Hf同位素地球化学特征01-第2页
上亿文档资料,等你来发现
华北克拉通东部含金刚石金伯利岩的侵位年龄和Sr-Nd-Hf同位素地球化学特征01-2
290ActaPetrologicaSinica;表4华北克拉通东部含金刚石金伯利岩的铪同位素分析;Table4Hfisotopiccomposit;样品号;Lu;ppm0.110.120.100.100.110;Hf;ppm6.087.106.644.195.425;176;176;177;Hf/Hf测试值;176;177;Hf/Hf初始值;Lu/Hf;1
290ActaPetrologicaSinica 岩石学报2007,23(2)表4 华北克拉通东部含金刚石金伯利岩的铪同位素分析结果Table4 HfisotopiccompositionsofthediamondiferouskimberlitesfromtheeasternNorthChinaCraton样品号Luppm0.110.120.100.100.110.050.050.090.100.070.080.090.110.080.050.040.040.030.020.040.040.060.08Hfppm6.087.106.644.195.425.814.726.716.747.166.266.605.046.236.884.324.483.304.304.195.229.5211.37176176177Hf/Hf测试值176177Hf/Hf初始值Lu/Hf177εHf/εεHfNd复县42号岩管L4203L4206L4207L4211L502003L502004L502005L502006L5001L5004L5005L5008L5010L5017Sv1s01Sv1s04Sv1s06Sv1s08SL2001SL2001Sv1b02Sv1b05Sv1b06Sv1b080.00260.00240.00210.00340.00290.00120.00150.00190.00210.00140.00180.00190.00310.00180.00100.00130.00130.00130.00070.00140.00110.00090.00100.282327±060.282339±060.282326±070.282398±23复县50号岩管0.282354±060.282373±060.282345±230.282359±080.282376±070.282359±060.282364±100.282356±120.282375±060.282364±07蒙阴胜利1号小管0.282463±070.282444±070.282427±080.282482±11蒙阴胜利1号大管0.282480±060.282489±220.282459±080.282453±090.282477±040.282478±050.2823050.2823180.2823070.2823690.2823290.2823620.2823320.2823420.2823580.2823470.2823480.2823390.2823480.2823480.2824540.2824330.2824160.2824710.2824740.2824470.2824440.2824700.282469-6.29-5.85-6.22-4.04-5.44-4.27-5.34-4.98-4.43-4.83-4.78-5.08-4.76-4.78-1.02-1.76-2.37-0.44-0.30-1.26-1.39-0.47-0.502.421.721.831.501.761.422.321.851.531.611.592.031.981.71-10.258.827.91-2.18-3.0312.631.17-2.487617776177-11  :重复样。Hf同位素校正所用参数和公式为1Lu/Hf.0322,1Hf/Hf.282772,λ=1.867×10/年,εCHUR=0CHUR=0Hf=1761771761774176177t176177176λ((Hf/Hf)/(Hf/Hf)1)×10,(Hf/Hf).282772-0.0322×(e-1),(Hf/Hf)f/iCHUR,t-CHUR,t=0i=(H177176177tλHf)(Lu/Hf)(e-1)。同位素初始值计算至金伯利岩喷发时,即465Ma。样品,测试值-样品,现今值×达135.6)。此外,复县一些金伯利岩具有类似南非和巴西过渡类型(介于Ⅰ型和Ⅱ型之间)金伯利岩的同位素组成,后McDonaldetal.,1995;Bizzi者常出现在克拉通边缘(etal.,1995)。总体上,华北克拉通含金刚石金伯利岩具有介于南非I型和II型金伯利岩之间的SrNd同位素组成(Hawkesworthetal.,1990)(图3)。4.3 Hf同位素华北克拉通含金刚石金伯利岩的铪同位素分析结果分。结果表明蒙阴和复县含金刚石金伯利岩具别见表4和图4有完全不同的Hf同位素组成,并和钕同位素有很好的正相关性(图4)。复县金伯利岩:华北克拉通内部的复县含金刚石金伯76177利岩具有非常一致的铪同位素组成。金伯利岩的1Hf/Hf176177Hf/Hf初始比值,其范围在0.282329~0.282362之间。而42号岩管中的细粒金伯利岩和一个粗晶斑状金伯利岩分76177Hf/Hf初始比值(分别为别具有复县岩区最高和最低的10.282369和0.262305)(表4)。取t=465Ma计算它们的,复县含金刚石金伯利岩具有非常一致,但很低的ε值εHfHf(-6.29~-4.04)。这些金伯利岩的Hf同位素组成完全不同于华北克拉通中、新生代玄武岩或高镁安山岩的Hf同位素组成(图4)(杨岳衡等,2006)。蒙阴金伯利岩:地处华北克拉通冀鲁辽陆核南缘的蒙阴金伯利岩有着与复县金伯利岩完全不同的铪同位素地球化学特征。蒙阴金伯利岩与复县金伯利岩相比,具有较高的76177Hf同位素组成。其1Hf/Hf初始比值也比较集中,其范围在0.282474~0.282416。而且,胜利1号大管和胜利1号小管金伯利岩之间没有明显Hf同位素组成差别。其ε值为Hf-2.37~-0.30。蒙阴金伯利岩的Hf同位素组成与华北北缘乌拉哈达地区中生代高镁安山岩的Hf同位素组成很类似初始比值变化范围很小,为0.282305~0.282369(表4)。其中复县50号岩管中各类金伯利岩具有非常一致的张宏福等:华北克拉通东部含金刚石金伯利岩的侵位年龄和SrNdHf同位素地球化学特征291图3 蒙阴和复县金伯利岩的Sr与Nd和Hf同位素图解,并与全球金伯利岩和钾镁煌斑岩进行对比(Hawkesworthetal.,1990)。所有同位素数据包括Tompkinsetal.(1999)和池际尚等(1996)文章中的Sr和Nd同位素数据在内皆换算到465Ma。星号表示华北克拉通奥陶系石灰岩的组成,与奥陶纪时期海水的同位素组成类似Fig.3 Srvs.NdandHfisotopicdiagramsforMengyinandFuxiankimberlites.(杨岳衡等,2006),尽管二者的Nd同位素组成存在很大的区别(图4)。蒙阴金伯利岩的Hf同位素组成靠近全硅酸盐地球的值。5 讨论5.1 金伯利岩侵位年龄金伯利岩侵位年龄的准确厘定对计算同位素的初始比值,从而探讨金伯利岩的来源问题十分必要。蒙阴胜利1号金伯利岩岩管中的一个金云母巨晶的ArAr同位素测试结果显示,其39Ar40Ar坪年龄和等时线年龄分别为466.3±0.3Ma和464.9±2.7Ma(图2)。该年龄与以前发表的该金伯利岩岩管中钙钛矿的UPb年龄(456±8Ma)(Dobbsetal.,1994)接近。因此,我们认为蒙阴金伯利岩侵位于465±2Ma。同样,复县50号金伯利岩岩管一个金云母巨晶获得的39Ar40Ar坪年龄为463.9±0.9Ma,其等时线年龄为463.9±6.3Ma(图2)。Dobbsetal.(1994)和Luetal.(1998)对复县金伯利岩中金云母的Rb、Sr同位素进行了分析,获得其RbSr模式年龄分布在452~465Ma之间,并获得一个很图4 华北克拉通金伯利岩的εHfεNd相关关系图。图中OIB和MORB的HfNd同位素变化趋势范围引自文献(Vervoortetal.,1999);中、新生代火山岩的HfNd同位素同位素组成引自文献(Zhangetal.,2002,2003;杨岳衡等,2006)Fig.4 PlotofεHfvs.εNdforthediamondiferouskimberlitesfromtheeasternNorthChinaCraton.好的等时线年龄为461.7±4.8Ma。所有这些年龄的一致性说明复县和蒙阴金伯利岩是同期侵位的,其侵位时间约为距今465Ma。因此,表中同位素的初始值和εHf、εNd和ISr值皆换算成465Ma。5.2 金伯利岩的SrNd同位素组成与海水蚀变众所周知,金伯利岩是一种混杂岩,是由原生结晶矿物(斑晶)、深源捕虏体(橄榄岩和/或麻粒岩)、捕虏晶(橄榄石、辉石、石榴石和尖晶石)、各种地壳围岩碎块以及超镁铁质岩浆、气/流体构成的混杂岩。尽管选择样品分析时尽量选择了那些相对细粒的且在显微镜下无各种地壳围岩碎块的样品,但地壳混染作用或蚀变作用对SrNd同位素组成的影响仍然是个不可忽略的问题。蒙阴和复县的金伯利岩很一致的Nd同位素组成和变化的Sr同位素组成(图3)说明地壳混染作用不是造成这些金伯利岩Sr同位素巨大变化的主要原因,因为如果地壳混染作用强烈的话,随着混染作用的增加其Nd同位素应随Sr同位素的变化而变化。金伯利岩的极快速侵位固结甚至爆发客观上也不可能造成大的同化混染作用。因此,尽管华北奥陶纪灰岩具有高的Sr同位素比值和类似于复县金伯利岩的Nd同位素组成,华北金伯利岩很宽的Sr同位素组成范围亦很难用地壳混染或灰岩的贡献来解释。那么,金伯利岩的这种具有海水蚀变特征的同位素组成就是金伯利岩在形成过程中自身熔/流体蚀变作用造成的结果,即金伯利岩本身的特征。华北金伯利岩的SrNd同位素特征介于南非I型和II型金伯利岩的事实(图3)也与其岩石学特征即含相对较多的金云母相吻合。造成金伯利岩自292ActaPetrologicaSinica 岩石学报2007,23(2)蚀变作用的流体亦是来源于形成金伯利岩的原始超镁铁质岩浆本身。这说明这些金伯利岩的形成过程中曾受到过海水的影响。奥陶纪灰岩的同位素组成特征说明奥陶纪时海r同位素组成。不同金伯利岩样品中巨大的水具有很高的SSr同位素组成差异可能是来源于软流圈的金伯利岩岩浆本身(斑晶矿物)、岩石圈物质(捕虏晶)和俯冲的洋壳流体(海水蚀变)比例的不同造成的。5.3 金伯利岩起源的同位素制约我国蒙阴和复县金伯利岩中的金刚石含有橄榄石、斜方separationtechniqueforrapidandhighlyreproducibledeterminationofLu/HfandHfisotoperatiosingeologicalmaterialsbyMCICPMS.GeostandardsNewsletter,27:133-145BizziLA,DeWitMJ,SmithCBetal.1995.HeterogeneousenrichedmantlematerialsandDupaltypemagmatismalongtheSWmarginoftheSaoFranciscoCraton,Brazil(inProc.Int.SymposiumonthePhysicsandchemistryoftheuppermantle,Ribeiro).JournalofGeodynamics,20(4):469-491ystemsCanilDandScarfeCM.1990.PhaserelationsinperidotiteCO2sto12GPa:ImplicationsfortheoriginofkimberlitesandcarbonatestabilityintheEarthssuppermantle.JournalofGeophysicalResearch,95:15805-15816,LuFX,ZhaoCHetal.1996.TheStudyofFormationConditionsChiJSofPrimaryDiamondDepositsinChina.ChinaUniversityof辉石、单斜辉石、石榴石、铬铁矿、菱镁矿和碳硅石等矿物包裹体(Leung,1990;Harrisetal.,1994;Meyeretal.,1994;Wangetal.,1996,1998,2000;Wang,1998;WangandGasparik,2001),但尚未发现在巴西和纳米比亚金伯利岩金刚石中出现的超高压(下地幔)矿物包裹体(KessonandFitzgerald,1992;HarteandHarris,1994;Harrisetal.,1997;McCammonetal.,1997;Joswigetal.,1999;Stacheletal.,2000)。因此,蒙阴和复县金伯利岩不大可能来源于地幔柱,很可能起源于670公里以上的浅部地幔。金伯利岩岩浆因上升速度快一般认为来不及经历重要的分离结晶作用(Mitchell,1986),加上前已叙及,这些金伯利岩未发生过大规模的地壳混染作用。因此,金伯利岩的组成很可能能够直接反映地幔源区组成。蒙阴和复县金伯利岩的SrNdHf同位素组成(图3和图4)暗示华北这些金伯利岩可能来源于多组分混和的地幔源区。首先,金伯利岩的Sr同位素组成明显比来自原始地幔源区的岩浆更富放射成因的Sr。金伯利岩如此大的Sr同位素变化范围却具有稳定的Nd和Hf同位素组成需要源区有水热蚀变的俯冲洋壳参与其形成。因此,华北东部金伯利岩的SrNdHf同位素记录了再循环的洋壳组分参与了这些金伯利岩的形成过程。6 结论山东蒙阴和辽宁复县两地金伯利岩具有一致的侵位年龄,约465±2Ma。两地金伯利岩具有不同的Nd和Hf同位素组成,而各岩区内部金伯利岩之间却具有非常一致的Nd和Hf同位素组成。这说明岩区内部不同岩管间的金伯利岩来源一致,而两岩区金伯利岩可能存在来源上的微弱差别。致谢  感谢中国科学院地质与地球物理研究所岩石圈演化国家重点实验室管辖的ArAr实验室桑海青在Ar同位素测试过程中以及放射性同位素实验室张任祜、储著银在Sr、Nd同位素测试过程中给予的大力帮助。ReferencesBizzarroM,BakerJ,UlfbeckD.2003.AnewdigestionandchemicalGeosciences,Beijing,144pp(inChinese)CollersonK,HapugodaS,KamberBSetal.2000.RocksfromtheMantleTransitionzone:MajoritebearingxenolithsfromMalaita,SoutherwestPacific.Science,288:1215-1223DaltonJAandPresnallDC.1998.Thecontinuumofprimarycarbonatitickimberliticmeltcompositionsinequilibriumwithlherzolite:DatafromthesystemCaOMgOAl2O3SiO2CO2at6GPa.JournalofPetrology,39:1953-1964DaviesRM,GriffinBL,PearsonNJetal.1999.Diamondsfromthedeep:pipeDO27,SlaveCraton,Canada.In:GurneyJJ,GurneyJL,PascoeMD,RichardsonSH(eds).TheJBDawsonvolume,Proceedingsof7thInternationalKimberliteConference,RedRoofDesign,Capetown,pp148-155DawsonJB.1980.Kimberlitesandtheirxenoliths.SpringerVerlagDobbsPN,DuncanDJ,HuSetal.1994.ThegeologyoftheMengyinkimberlites,Shandong,China.In:MeyerHOA,LeonardosOH(eds).Proceedingsof5thInternationalKimberliteConferencevolume1.Diamonds:characterization,genesisandexploration,CPRM,Brasilia,pp106-115DongZX.1994.Chinesekimberlites.SciencePress,Beijing,318pp(inChinese)EgglerDH.1989.Kimberlites:Howdotheyform?In:RossJ(ed).Kimberlitesandrelatedrocks,volume1,Blackwell,pp489-504FengC,ZhangHF,ZhouXH.2000.NewkimberlitefieldfoundinLiaoxi,China.SeismologyandGeology,22(supl):95-98(inChinesewithEnglishabstract)GreenDH,FalloonTJ,TaylorWR.1987.MantlederivedmagmasRolesofvariablesourceperidotiteandvariableCHOfluidcompositions.In:MysenBO(ed).MagmaticProcesses:Physiochemicalprinciples,volume1,GeochemicalSociety,pp139-154HaggertySE.1999.Adiamondtrilogy:Superplumes,supercontinents,andsupernovae.Science,285:851-860HaggertySEandSautteV.1990.Ultradeep(greaterthan300km),ultramaficuppermantlexenoliths.Science,248:993-996HarrisJW,DuncanDJ,ZhangFetal.1994.Thephysicalcharacteristicsandsyngeneticinclusiongeochemistryofdiamondsfrompipe50,LiaoningProvince,PeoplessRepublicofChina.In:MeyerHOA,LeonardosOH(eds).Diamonds:Characterization,GenesisandExploration,CPRMSpecialPublication1/B,Brasilia,pp105-115HarrisJW,HutchinsonMT,MursthouseMetal.1997.Anewtetragonalsilicatemineraloccurringasinclusionsinlowermantlediamonds.Nature,387:486-488HarteBandHarrisJW.1994.Lowermantlemineralassociationspreservedindiamonds.MineralogicalMagazine,58A:384-385.HawkesworthCJ,KemptonPD,RogersNWetal.1990.Continentalmantlelithosphere,andshallowlevelenrichmentprocessesintheEarthssmantle.EarthandPlanetaryScienceLetters,96:256-268JanseAJAandSheahanPA.1995.Catalogueofworldwidediamondandkimberliteoccurrences:aselectiveandannotativeapproach.Journal张宏福等:华北克拉通东部含金刚石金伯利岩的侵位年龄和SrNdHf同位素地球化学特征293ofGeochemicalExploration,53:73-112JoswigW,StachelT,HarrisJWetal.1999.NewCasilicateinclusionsindiamondstracersfromthelowermantle.EarthandPlanetScienceLetters,17:1-6KaminskyFV,ZakharchenkoOD,DaviesRetal.2001.SuperdeepdiamondsfromtheJuinaarea,MatoGrossoState,Brazil.ContributionstoMineralogyandPetrology,140:734-753KessonSEandFitzgeraldJD.1992.PartitioningofMgO,FeO,NiO,MnOandCretweenmagnesiansilicateperovskiteand2O3bmagnesiowustiteimplicationsfortheoriginofinclusionsindiamondandthecompositionofthelowermantle.EarthandPlanetScienceLetters,111:229-240,KreissigK,KamberBSetal.2002.CombinedchemicalKleinhannsICseparationofLu,Hf,Sm,Nd,andREEsfromasinglerockdigest:VervoortJ,PatchettPJ,BlichertToftJetal.1999.RelationshipsbetweenLuHfandSmNdisotopicsystemsintheglobalsedimentarysystem.EarthandPlanetaryScienceLetters,168:79-99WangA,PasterisJD,MeyerHOAetal.1996.Magnesitebearinginclusionassemblageinnaturaldiamond.EarthandPlanetaryScienceLetters,141:293-306039WangSS.1992.Constraintsofchlorineon4Ar/Ardatingand4039calculationofhighprecisionAr/Arages.ScienceGeologicaSinica,18(4):369-378(inChinese)WangW.1998.Formationofdiamondwithmineralinclusionsof“mixed”eclogiteandperidotiteparagenesis.EarthandPlanetaryScienceLetters,160:831-843WangWandGasparikT.2001.Metasomaticclinopyroxeneinclusionsin,China.GeochimicaetdiamondsfromtheLiaoningprovincepreciseandaccurateisotopedeterminationsofLuHfandSmNdusingmulticollectorICPMS.AnalyticalChemistry,74:67-73LeFevreBandPinC.2001.AnextractionchromatographymethodforHfseparationpriortoisotopicanalysisusingmultiplecollectionICPmassspectrometry.AnalyticalChemistry,73:2453-2460LeungIS.1990.SiliconcarbideclusterentrappedinadiamondfromFuxian,China.AmericanMineralogist,75:1110-1119LiXH,QiCS,LiuYetal.2005.RapidSeparationofHffromRockSamplesforIsotopeanalysisbyMCICPMS:AModifiedSingleColumnExtrationChromatographyMethod.Geochimica,34(2):109-114(inChinesewithEnglishabstract)LiuLG.1999.Genesisofdiamondsinthelowermantle.ContributionstoMineralogyandPetrology,134:170-173LuFX,WangY,ChenMHetal.1998.GeochemicalcharacteristicsandemplacementagesoftheMengyinkimberlites,ShandongProvince,China.InternationalGeologyReview,40:998-1006McCammonC,HutchinsonM,HarrisJ.1997.FerricironcontentofmineralinclusionsindiamondsfromSaoLuiz:Aviewintothelowermantle.Science,278:434-436McDonaldI,DeWitMJ,SmithCBetal.1995.ThegeochemistryoftheplatinumgroupelementsinBrazilianandsouthernAfricankimberlites.GeochimicaetCosmochimicaActa,59:2883-2903MeyerHOA,ZhangA,MilledgeHJetal.1994.DiamondsandinclusionsindiamondsfromChinesekimberlites.In:MeyerHOA,LeonardosOH(eds.).Diamonds:Characterization,GenesisandExploration.CPRMSpecialPublication1/B,Brasilia,pp98-105MitchellRH.1986.Kimberlites:Mineralogy,Geochemistry,andPetrology.PlenumPressMitchellRH.1995.Kimberlites,Orangeites,andRelatedRocks.PlenumPressSangHQ,WangSS,QiuJ.1994.The40Ar39Aragesofpyroxene,horblendeandplagioclaseinTaipingzhaigranulitesinQianxiCounty,HebeiProvinceandtheirgeologicalimplications.ActaPetrologicaSinica,12(3):390-400(inChinesewithEnglishabstract)StachelT,HarrisJW,BreyGPetal.2000.Kankandiamonds(Guinea)II:lowermantleinclusionparageneses.ContributionstoMineralogyandPetrology,140:16-27SteigerRHandJ]gerE.1977.Subcommissionongeochronology;conventionontheuseofdecayconstantsingeochronologyandcosmochronology.EarthandPlanetaryScienceLetters,36:359-362TaintonKMandMcKenzieD.1994.Thegenerationofkimberlites,lamproites,andtheirsourcerocks.JournalofPetrology,35:787-817TompkinsLA,MeyerSP,HanZetal.1999.PetrologyandgeochemistryofkimberlitesfromShandongandLiaoningProvinces,China.In:GurneyJJ,GurneyJL,PascoeMD,RichardsonSH(eds.).Proceedingsof7thInternationalKimberliteConfernence,volume2,UnitedStates,pp872-887CosmochimicaActa,65:611-620WangW,SuenoS,TakahashiEetal.2000.EnrichmentprocessesatthebaseoftheArcheanlithosphericmantle:observationsfromtraceelementcharacteristicsofpyropicgarnetinclusionsindiamonds.ContributionstoMineralogyandPetrology,139:720-733WangW,TakahashiE,SuenoS.1998.GeochemicalpropertiesoflithosphericmantlebeneathSinoKoreacraton;evidencefromgarnetxenocrystsanddiamondinclusions.PhysicsofEarthandPlanetaryInteriors,107:249-260WylliePJ.1980.Theoriginofkimberlite.JournalofGeophysicalResearch,85:6902-6910WylliePJ.1989.ThegenesisofkimberlitesandsomelowSiO2,highalkalimagmas.In:RossJ(ed.).KimberlitesandRelatedRocks.GeologicalSocietyofAustraliaSpecialPublication14,Blackwell,pp603-615WylliePJ.1994.Experimentalpetrologyofuppermantlematerials,processesandproducts.In:RibeiroFB(ed).JournalofGeodynamics,ProceedingsofInternationalSymposiumonthePhysicsandChemistryoftheuUpperMantle,PergamonPress,pp429-468WuFY,YangYH,XieLWetal.2006.HfisotopiccompositionsofthestandardzirconsandbaddeleyitesusedinUPbgeochronology.ChemicalGeology,234:105-126XuP,WuFY,XieLWetal.2004.HfisotopiccompositionsofthestandardzirconsforUPbdating.ChineseScienceBulletin,49(15):1642-1648YangYH,ZhangHF,XieLWetal.2006.PetrogenesisoftypicalMesozoicandCenozoicvolcanicrocksfromtheNorthChinaCraton:newevidencefromHfisotopicstudies.ActaPetrologicaSinica,22(6):1665-1671(inChinesewithEnglishabstract)YorkD.1969.Leastsquaresfittingofastraightlinewithcorrelatederrors.EarthandPlanetaryScienceLetters,5:320-324ZhangAD,XuDH,XieXLetal.1994.ThestatusandfutureofdiamondexplorationinChina.In:MeyerHOA,LeonardosOH(eds.).Proceedingsof5thInternationalKimberlitesConference,volume2,Diamonds:Characterization,GenesisandExploration.CPRM,Brasilia,pp269-264ZhangHF.1993.DiscussionongeochemicalcharacteristicsandpetrogenesisofkimberlitesinTieling,LiaoningProvince.Geoscience,7(4):458-464(inChinese)ZhangHF,SunM,LuFXetal.2001.GeochemicalsignificanceofagarnetlherzolitefromtheDahongshankimberlite,YangtzeCraton,southernChina.GeochemicalJournal,35:315-331ZhangHF,SunM,ZhouXHetal.2002.MesozoiclithospheredestructionbeneaththeNorthChinaCraton:evidencefrommajor,traceelement,andSrNdPbisotopestudiesofFangchengbasalts.ContributionstoMineralogyandPetrology,144:241-253ZhangHF,SunM,ZhouXHetal.2003.SecularevolutionofthelithospherebeneaththeeasternNorthChinaCraton:evidencefromMesozoicbasaltsandhighMgandesites.GeochimicaetCosmochimicaActa,67(22):4373-4387294ActaPetrologicaSinica 岩石学报2007,23(2)ZhaoGC,WildeSA,CawoodPAetal.2002.SHRIMPUPbzirconagesoftheFupingcomplexes:implicationsforlateArcheantoPaleoproterozoicaccretionandassemblyoftheNorthChinaCraton.AmericanJournalofScience,302:191-22634(2):109-114桑海青,王松山,裘冀.1994.河北省迁西县太平寨花岗岩中辉石、039角闪石和长石的4Ar/Ar年龄及其地质意义.岩石学报,12(3):390-400039039王松山.1992.氯对4Ar/Ar定年的制约和高精度4Ar/Ar年龄的附中文参考文献池际尚,路凤香,赵崇贺等.1996.中国原生金刚石矿形成条件研究.中国地质大学出版社,北京,144pp董振信.1994.中国金伯利岩.科学出版社,北京,318pp冯闯,张宏福,周新华.2000.辽西发现金伯利岩.地震地质,22(增95-98刊)18(4):369-378计算.地质学报,杨岳衡,张宏福,谢烈文等.2006.华北克拉通中、新生代典型火山岩的岩石成因:铪同位素新证据.岩石学报,22(6):1665-1671张宏福.1993.辽宁省铁岭地区金伯利岩的地球化学特征及其成因7(4):458-464初探.现代地质,李献华,祁昌实,刘颖等.2005.岩石样品快速Hf分离与MCICPMS同位素分析:一个改进的单柱提取色谱方法.地球化学,包含各类专业文献、各类资格考试、高等教育、外语学习资料、文学作品欣赏、幼儿教育、小学教育、中学教育、华北克拉通东部含金刚石金伯利岩的侵位年龄和Sr-Nd-Hf同位素地球化学特征01等内容。 
 岗岩的地球化学和锆石 Hf 同位素特征) 通过对北京...年龄和 Hf 同位素组成的研究,对华北克拉通 新太...幔源岩浆岩出现锆石一定 表明在岩浆侵位过程发生了...  地球科学学院地质学 日期: 金刚石的成因,...Sr 和 Sm-Nd 模式年龄, 均为太古代(3 200~3 ...而金伯利岩的侵位时代分别为90Ma 和120M 西澳...  另外在矿产资源研究中,同位素地球化学可以提供成岩、...同位素地质年代学主要研究地球及其地质体的年龄和 ...地幔来源的岩浆在上升侵位过程中混染了地壳 物质,...  捕掳晶的矿物学和地球化学类特征似于中国东部新生 ...的斑状金云 [2] 母金伯利岩 ,且基本不含金刚石...痕量元素和Sr -Nd 同位素特征 对比华北板块广泛发育...  中都有同位素地球化学的应用, 例如稳定同 位素中的...(1)锆石 U-Pb 年龄、Sr-Nd-Hf 同位素地球化学与...岩相学及 -2- 元素和Sr-Nd-Hf同位素特征表明鹅湖...}

我要回帖

更多关于 金刚石是混合物吗 的文章

更多推荐

版权声明:文章内容来源于网络,版权归原作者所有,如有侵权请点击这里与我们联系,我们将及时删除。

点击添加站长微信