解决以下方程为Y假设b和y若a是非零实数的实数 6-by=19

教师讲解错误
错误详细描述:
(2014山东济宁)“如果二次函数y=ax2+bx+c的图象与x轴有两个公共点,那么一元二次方程ax2+bx+c=0有两个不相等的实数根.”请根据你对这句话的理解,解决下面问题:若m、n(m<n)是关于x的方程1-(x-a)(x-b)=0的两根,且a<b,则a、b、m、n的大小关系是(  )A.m<a<b<nB.a<m<n<bC.a<m<b<nD.m<a<n<b
电话:010-
地址:北京市西城区新街口外大街28号B座6层601
COPYRIGHT (C)
INC. ALL RIGHTS RESERVED. 题谷教育 版权所有
京ICP备号 京公网安备已知:m、n是方程x2-6x+5=0的两个实数根,且m<n,抛物线y=-x2+bx+c的图象经过点A(m,0)、B(0,n).
(1)求这个抛物线的解析式;
(2)设(1)中抛物线与x轴的另一交点为C,抛物线的顶点为D,试求出点C、D的坐标和△BCD的面积;(注:抛物线y=ax2+bx+c(a≠0)的顶点坐标为2
(3)P是线段OC上的一点,过点P作PH⊥x轴,与抛物线交于H点,若直线BC把△PCH分成面积之比为2:3的两部分,请求出P点的坐标.
(1)通过解方程即可求出m、n的值,那么A、B两点的坐标就可求出.然后根据A、B两点的坐标即可求出抛物线的解析式.
(2)根据(1)得出的抛物线的解析式即可求出C、D两点的坐标.由于△BCD的面积无法直接求出,可用其他图形的面积的“和,差关系”来求出.过D作DM⊥x轴于M,那么△BCD的面积=梯形DMOB的面积+△DCM的面积-△BOC的面积.由此可求出△BCD的面积.
(3)由于△PCH被直线BC分成的两个小三角形等高,因此面积比就等于底边的比.如果设PH与BC的交点为E,那么EH就是抛物线与直线BC的函数值的差,而EP就是E点的纵坐标.然后可根据直线BC的解析式设出E点的坐标,然后表示出EH,EP的长.进而可分两种情况进行讨论:①当EH=EP时;②当EH=EP时.由此可得出两个不同的关于E点横坐标的方程即可求出E点的坐标.也就求出了P点的坐标.
解:(1)解方程x2-6x+5=0,
(x-1)(x-5)=0,
得x1=5,x2=1
由m<n,有m=1,n=5
所以点A、B的坐标分别为A(1,0),B(0,5).
将A(1,0),B(0,5)的坐标分别代入y=-x2+bx+c.
解这个方程组,得:
所以,抛物线的解析式为y=-x2-4x+5
(2)由y=-x2-4x+5,令y=0,得-x2-4x+5=0,
解这个方程,得x1=-5,x2=1,
所以C点的坐标为(-5,0).由顶点坐标公式计算,得点D(-2,9).
过D作x轴的垂线交x轴于M.
则S△DMC=×9×(5-2)=
S梯形MDBO=×2×(9+5)=14,
S△BOC=×5×5=,
所以,S△BCD=S梯形MDBO+S△DMC-S△BOC=14+-=15.
(3)设P点的坐标为(a,0)
因为线段BC过B、C两点,
所以BC所在的直线方程为y=x+5.
那么,PH与直线BC的交点坐标为E(a,a+5),
PH与抛物线y=-x2-4x+5的交点坐标为H(a,-a2-4a+5).
由题意,得①EH=EP,
即(-a2-4a+5)-(a+5)=(a+5)
解这个方程,得a=-或a=-5(舍去)
②EH=EP,即(-a2-4a+5)-(a+5)=(a+5)
解这个方程,得a=-或a=-5(舍去),
P点的坐标为(-,0)或(-,0).已知P(-3,m)和Q(1,m)是抛物线y=2x2+bx+1上的两点.(1)求b的值;(2)判断关于x的一元二次方程2x2+bx+1=0是否有实数根,若有,求出它的实数根;若没有,请说明理由;(3)将抛物线y=2x2+bx+1的图象向上平移k(k是正整数)个单位,使平移后的图象与x轴无交点,求k的最小值.【考点】;.【分析】(1)根据对称轴的定义观察点P(-3,m)和Q(1,m)纵坐标相同,求出对称轴,从而求出b值;(2)把b值代入一元二次方程,根据方程的判别式来判断方程是否有根;(3)先将抛物线向上平移,在令y=0,得到一个新方程,此方程无根,令△<0,解出k的范围,从而求出k的最小值.【解答】解:(1)∵点P、Q在抛物线上且纵坐标相同,∴P、Q关于抛物线对称轴对称并且到对称轴距离相等.∴抛物线对称轴,∴b=4.(2)由(1)可知,关于x的一元二次方程为2x2+4x+1=0.∵△=b2-4ac=16-8=8>0,∴方程有实根,∴x===-1±;(3)由题意将抛物线y=2x2+bx+1的图象向上平移k(k是正整数)个单位,使平移后的图象与x轴无交点,∴设为y=2x2+4x+1+k,∴方程2x2+4x+1+k=0没根,∴△<0,∴16-8(1+k)<0,∴k>1,∵k是正整数,∴k的最小值为2.【点评】此题主要考查一元二次方程与函数的关系及函数平移的知识.声明:本试题解析著作权属菁优网所有,未经书面同意,不得复制发布。答题:leikun老师 难度:0.51真题:13组卷:176
解析质量好中差当前位置:
>>>已知m是非零实数,抛物线C:y2=2px(p>0)的焦点F在直线l:x-my-m22=..
已知m是非零实数,抛物线C:y2=2px(p>0)的焦点F在直线l:x-my-m22=0上.(I)若m=2,求抛物线C的方程(II)设直线l与抛物线C交于A、B,△AA2F,△BB1F的重心分别为G,H,求证:对任意非零实数m,抛物线C的准线与x轴的焦点在以线段GH为直径的圆外.
题型:解答题难度:中档来源:浙江
(1)因为焦点F(P2,0)在直线l上,得p=m2又m=2,故p=4所以抛物线C的方程为y2=8x(2)证明设A(x1,y1),B(x2,y2)由x=my+m22y2=2m2x消去x得y2-2m3y-m4=0,由于m≠0,故△=4m6+4m4>0,且有y1+y2=2m3,y1y2=-m4,设M1,M2分别为线段AA1,BB1的中点,由于2M1C=GF,2M2H=HF,可知G(x13,2y13),H(x23,2y23),所以x1+x26=m(y1+y2)+m26=m43+m26,2y1+2y26=2m33,所以GH的中点M(m43+m26,2m23).设R是以线段GH为直径的圆的半径,则R2=14|GH|2=19(m2+4)(m2+1)m2设抛物线的标准线与x轴交点N(-m22,0),则|MN|2=(m22+m43+m26)+(2m33)2=19m4(m4+8m2+4)=19m4[(m2+1)(m2+4)+3m2]>19m2(m2+1)(m2+4)=R2.故N在以线段GH为直径的圆外.
马上分享给同学
据魔方格专家权威分析,试题“已知m是非零实数,抛物线C:y2=2px(p>0)的焦点F在直线l:x-my-m22=..”主要考查你对&&抛物线的标准方程及图象,抛物线的性质(顶点、范围、对称性、离心率),圆锥曲线综合&&等考点的理解。关于这些考点的“档案”如下:
现在没空?点击收藏,以后再看。
因为篇幅有限,只列出部分考点,详细请访问。
抛物线的标准方程及图象抛物线的性质(顶点、范围、对称性、离心率)圆锥曲线综合
抛物线的标准方程及图像(见下表):
抛物线的标准方程的理解:
①抛物线的标准方程是指抛物线在标准状态下的方程,即顶点在原点,焦点在坐标轴上;②抛物线的标准方程中的系数p叫做焦参数,它的几何意义是:焦点到准线的距离.焦点到顶点以及顶点到准线的距离均为③抛物线的标准方程有四种类型,所以判断其类型是解题的关键,在方程的类型已确定的前提下,由于标准方程只有一个参数p,所以只需一个条件就可以确定一个抛物线的方程;④对以上四种位置不同的抛物线和它们的标准方程进行对比、分析,得出其异同点。共同点:a.原点在抛物线上;b.焦点都在坐标轴上;c.准线与焦点所在轴垂直,垂足与焦点分别关于原点对称,它们与原点的距离都等于一次项系数的绝对值的不同点:a.焦点在x轴上时,方程的右侧为±2px,左端为y2;焦点在y轴上时,方程的右端为±2py,左端为x2;b.开口方向与x轴(或y轴)的正半轴相同,焦点在x轴(或y轴)的正半轴上,方程右端取正号;开口方向与x轴(或y轴)的负半轴相同,焦点在x轴(或y轴)的负半轴上,方程的右端取负号.
求抛物线的标准方程的常用方法:
(1)定义法求抛物线的标准方程:定义法求曲线方程是经常用的一种方法,关键是理解定义的实质及注意条件,将所给条件转化为定义的条件,当然还应注意特殊情况.(2)待定系数法求抛物线的标准方程:求抛物线标准方程常用的方法是待定系数法,为避免开口不确定,分成(p&0)两种情况求解的麻烦,可以设成(m,n≠0),若m、n&0,开口向右或向上;m、n&0,开口向左或向下;m、n有两解,则抛物线的标准方程各有两个。
&&抛物线的性质(见下表):
抛物线的焦点弦的性质:
&关于抛物线的几个重要结论:
(1)弦长公式同椭圆.(2)对于抛物线y2=2px(p&0),我们有P(x0,y0)在抛物线内部P(x0,y0)在抛物线外部&(3)抛物线y2=2px上的点P(x1,y1)的切线方程是抛物线y2=2px(p&0)的斜率为k的切线方程是y=kx+ (4)抛物线y2=2px外一点P(x0,y0)的切点弦方程是(5)过抛物线y2=2px上两点&的两条切线交于点M(x0,y0),则 (6)自抛物线外一点P作两条切线,切点为A,B,若焦点为F, 又若切线PA⊥PB,则AB必过抛物线焦点F.
利用抛物线的几何性质解题的方法:
根据抛物线定义得出抛物线一个非常重要的几何性质:抛物线上的点到焦点的距离等于到准线的距离.利用抛物线的几何性质,可以进行求值、图形的判断及有关证明.
抛物线中定点问题的解决方法:
在高考中一般以填空题或选择题的形式考查抛物线的定义、标准方程以及几何性质等基础知识,在解答题中常常将解析几何中的方法、技巧与思想集于一身,与其他圆锥曲线或其他章节的内容相结合,考查综合分析问题的能力,而与抛物线有关的定值及最值问题是一个很好的切人点,充分利用点在抛物线上及抛物线方程的特点是解决此类题型的关键,在求最值时经常运用基本不等式、判别式以及转化为函数最值等方法。
利用焦点弦求值:
利用抛物线及焦半径的定义,结合焦点弦的表示,进行有关的计算或求值。
抛物线中的几何证明方法:
利用抛物线的定义及几何性质、焦点弦等进行有关的几何证明是抛物线中的一种常见题型,证明时注意利用好图形,并做好转化代换。 圆锥曲线的综合问题:
1、圆锥曲线的范围问题有两种常用方法: (1)寻找合理的不等式,常见有△>0和弦的中点在曲线内部; (2)所求量可表示为另一变量的函数,求函数的值域。 2、圆锥曲线的最值、定值及过定点等难点问题。直线与圆锥曲线的位置关系:
(1)从几何角度来看,直线和圆锥曲线有三种位置关系:相离、相切和相交,相离是直线和圆锥曲线没有公共点,相切是直线和圆锥曲线有唯一公共点,相交是直线与圆锥曲线有两个不同的公共点,并特别注意直线与双曲线、抛物线有唯一公共点时,并不一定是相切,如直线与双曲线的渐近线平行时,与双曲线有唯一公共点,但这时直线与双曲线相交;直线平行(重合)于抛物线的对称轴时,与抛物线有唯一公共点,但这时直线与抛物线相交,故直线与双曲线、抛物线有唯一公共点时可能是相切,也可能是相交,直线与这两种曲线相交,可能有两个交点,也可能有一个交点,从而不要以公共点的个数来判断直线与曲线的位置关系,但由位置关系可以确定公共点的个数.(2)从代数角度来看,可以根据直线方程和圆锥曲线方程组成的方程组解的个数确定位置关系.设直线l的方程与圆锥曲线方程联立得到ax2+bx+c=0.①若a=0,当圆锥曲线是双曲线时,直线l与双曲线的渐近线平行或重合;当圆锥曲线是抛物线时,直线l与抛物线的对称轴平行或重合.②若当Δ&0时,直线和圆锥曲线相交于不同两点,相交.当Δ=0时,直线和圆锥曲线相切于一点,相切.当Δ&0时,直线和圆锥曲线没有公共点,相离.
直线与圆锥曲线相交的弦长公式:
若直线l与圆锥曲线F(x,y)=0相交于A,B两点,求弦AB的长可用下列两种方法:(1)求交点法:把直线的方程与圆锥曲线的方程联立,解得点A,B的坐标,然后用两点间距离公式,便得到弦AB的长,一般来说,这种方法较为麻烦.(2)韦达定理法:不求交点坐标,可用韦达定理求解.若直线l的方程用y=kx+m或x=n表示.&
发现相似题
与“已知m是非零实数,抛物线C:y2=2px(p>0)的焦点F在直线l:x-my-m22=..”考查相似的试题有:
279356558171430574624630465464392567}

我要回帖

更多关于 已知xyz是非零实数 的文章

更多推荐

版权声明:文章内容来源于网络,版权归原作者所有,如有侵权请点击这里与我们联系,我们将及时删除。

点击添加站长微信