30吨液压万能试验机压块试验机抛物线在操作过程中为什么不会显示

量,如用一般的差动编码器测 量,计算结果会和真实的弹性模量差一个数量级,由标距造成的,引伸计在测量 中精度高,但是量程小,所以一般试验机进行拉伸压缩试验都不用引伸计,除非 测量弹性模量和要求很高的精度时,而一般试验,一般的差动编码器测位移精度 足够,引申计是用来测量变形部分延伸率的,如果不用引伸计就不能得到应力-应 变曲线, 因为此时得到的应变把拉伸机齿轮空转及位移和非测试部分的位移都算 上了。但是不用引伸计还是可以得到抗拉强度的,另外对于有屈服平台的材料也 能得到屈服强度, 但是对于没有屈服平台就是连续屈服的材料就没办法得到屈服 强度了。关于引伸计除了通产所见的机械引伸计外,目前比较流行的是激光引伸 计,测试时有激光打在样品上作为测量位移的标定。这样就能测试机械引伸计所 无法测的叫做 post-uniform elongation 的参量, 即试样发生颈缩后到断裂前的延 伸率。这个参量在表征带孔件冲压时扩孔率时非常重要。 拉伸试验, 金属虽然说每一个试验机厂家对金属拉伸都很熟悉,但是真正完 全能够把标准以及标准后面的理由吃透的厂家并不多, 所以现在每一个试验机厂 家在指导用户完成金属拉伸试验的时候一般是从他们自己设备的能力出发, 以最 简单的方式来完成试验,比如全部以横梁位移的速度来完成整个试验过程。金属 拉伸试验还是有很多细节问题非常值得我们重视。 首先是拉伸速度的问题。在弹性变形阶段,金属的变形量很小而拉伸载荷迅 速增大。这时候如果以横梁位移控制来做拉伸试验,那么速度太快会导致整个弹 性段很快就被冲过去。以弹性模量为 200Gpa 的普通钢材为例,如果标距为 50mm 的材料,在弹性段内如以 10mm/min 的速度进行拉伸试验,那么实际的 应力速率为 200000N/mm2S-1×10mm/min×1min/60S×1/50mm=666N/mm2S-1 一般的钢材屈服强度就小于 600Mpa, 所以只需要 1 秒钟就把试样拉到了屈 服,这个速度显然太快。所以在弹性段,一般都选择采用应力速率控制或者负荷 控制。塑性较好的材料试样过了弹性段以后,载荷增加不大,而变形增加很快, 所以为了防止拉伸速度过快,一般采用应变控制或者横梁位移控制。所以在 GB228-2002 里面建议了,“在弹性范围和直至上屈服强度,试验机夹头的分离 速率应尽可能保持恒定并在规定的应力速率的范围内(材料弹性模量 E/(N/mm2) <150000, 应力速率控制范围为 2—20(N/mm2)?s-1、 材料弹性模量 E/(N/mm2)≥ 150000,应力速率控制范围为 6—60(N/mm2)?s-1。若仅测定下屈服强度,在试 样平行长度的屈服期间应变速率应在 0.00025/s~0.0025/s 之间。平行长度内的 应变速率应尽可能保持恒定。 在塑性范围和直至规定强度(规定非比例延伸强度、 规定总延伸强度和规定残余延伸强度)应变速率不应超过 0.0025/s。”。这里面有 一个很关键的问题,就是应力速度与应变速度的切换点的问题。最好是在弹性段 结束的点进行应:力速度到应变速度的切换。在切换的过程中要保证没有冲击、 没有掉力。这是拉力试验机的一个非常关键的技术。其次是引伸计的装夹、跟踪 与取下来的时机。对于钢材的拉伸的试验,如果要求取最大力下的总伸长(Agt), 那么引伸计就必须跟踪到最大力以后再取下。对于薄板等拉断后冲击不大的试 样,引伸计可以直接跟踪到试样断裂;但是对于拉力较大的试样,最好的办法是 试验机拉伸到最大力以后开始保持横梁位置不动, 等取下引伸计以后在把试样拉 断。有的夹具在夹紧试样的时候会产生一个初始力,一定要把初始力消除以后再 夹持引伸计,这样引伸计夹持的标距才是试样在自由状态下的原始标距。能够这 么做试验的试验机不多,请您在选购和使用的时候注意这几点。任何的材料在受 到外力作用时都会产生变形。在受力的初始阶段,一般来说这种变形与受到的外 力基本成线性的比例关系,这时若外力消失,材料的变形也将消失,恢复原状, 这一阶段通常称为弹性阶段,物理学中的虎克定律,就是描述这一特性的基本定 律。但当外力增大到一定程度后,变形与受到的外力将不再成线性比例关系,这 时当外力消失后, 材料的变形将不能完全消失, 外型尺寸将不能完全恢复到原状, 这一阶段称为塑性变形阶段。由于材料种类繁多,性能差异很大,弹性阶段与塑 性阶段的过渡情况很复杂, 通过和残余应力等指标作为材料弹性阶段与塑性阶段 的转折点的指标来反应材料的过渡过程的性能, 其中屈服点与非比例应力是最常 用的指标。虽然屈服点与非比例应力同是反应材料弹性阶段与塑性阶段“转折点” 的指标,但它们反应了不同过渡阶段特性的材料的特点,因此它们的定义不同, 求取方法不同, 所需设备也不完全相同。 因此笔者将分别对这两个指标进行分析。 本文首先分析屈服点的情况: 一切的产品与设备都是由各种不同性能的材料构成, 它们在使用中会受到各种 各样的外力作用,自然就会产生各种各样的变形,,但这种变形必须被限制在弹 性范围之内,否则产品的形状将会发生永久变化,影响继续使用,设备的形状也 将发生变化,轻则造成加工零部件精度等级下降,重则造成零部件报废,产生重 大的质量事故。 那么如何确保变形是在弹性范围内呢?从上面的分析已知材料的 变形分为弹性变形与塑性变形两个阶段, 只要找出这对已知材料的力学性能进行 试验与理论分析,人们总结出了采用屈服点、非比例应力两个阶段的转折点,工 程设计人员就可确保产品与设备的可靠运行。 从上面的描述,可以看出准确求取屈服点在材料力学性能试验中是非常重要 的,在许多的时候,它的重要性甚至大于材料的极限强度值(极限强度是所有材 料力学性能必需求取的指标之一),然而非常准确的求取它,在许多的时候又是 一件不太容易的事。它受到许多因素的制约,归纳起来有: * 夹具的影响; * 试验机测控环节的影响; * 结果处理软件的影响; * 试验人员理论水平的影响等。 这其中的每一种影响都包含了不同的方面。下面逐一进行分析 一、 夹具的影响 这类影响在试验中发生的几率较高, 主要表现为试样夹持部分打滑或试验机某 些力值传递环节间存在较大的间隙等因素,它在旧机器上出现的概率较大。由于 机器在使用一段时间后,各相对运动部件间会产生磨损现象,使得摩擦系数明显 降低,最直观的表现为夹块的鳞状尖峰被磨平,摩擦力大幅度的减小。当试样受 力逐渐增大达到最大静摩擦力时,试样就会打滑,从而产生虚假屈服现象。如果 以前使用该试验机所作试验屈服值正常,而现在所作试验屈服值明显偏低,且在 某些较硬或者较脆的材料试验时现象尤为明显,则一般应首先考虑是这一原因。 这时需及时进行设备的大修,消除间隙,更换夹块。 二、 试验机测控环节的影响 试验机测控环节是整个试验机的核心, 随着技术的发展, 目前这一环节基本上 采用了各种电子电路实现自动测控。由于自动测控知识的深奥,结构的复杂,原 理的不透明,一旦在产品的设计中考虑不周,就会对结果产生严重的影响,并且 难以分析其原因。针对材料屈服点的求取最主要的有下列几点: 1、传感器放大器频带太窄 由于目前试验机上所采用的力值检测元件基本上为载荷传感器或压力传感器, 而这两类传感器都为模拟小信号输出类型,在使用中必须进行信号放大。众所周 知,在我们的环境中,存在着各种各样的电磁干扰信号,这种干扰信号会通过许 多不同的渠道偶合到测量信号中一起被放大,结果使得有用信号被干扰信号淹 没。为了从干扰信号中提取出有用信号,针对材料试验机的特点,一般在放大器 中设置有低通滤波器。合理的设置低通滤波器的截止频率,将放大器的频带限制 在一个适当的范围,就能使试验机的测量控制性能得到极大的提高。然而在现实 中,人们往往将数据的稳定显示看的非常重要,而忽略了数据的真实性,将滤波 器的截止频率设置的非常低。这样在充分滤掉干扰信号的同时,往往把有用信号 也一起滤掉了。在日常生活中,我们常见的电子秤,数据很稳定,其原因之一就 是它的频带很窄,干扰信号基本不能通过。这样设计的原因是电子秤称量的是稳 态信号,对称量的过渡过程是不关心的,而材料试验机测量的是动态信号,它的 频谱是非常宽的,若频带太窄,较高频率的信号就会被衰减或滤除,从而引起失 真。对于屈服表现为力值多次上下波动的情况,这种失真是不允许的。就万能材 料试验机而言,笔者认为这一频带最小也应大于 10HZ,最好达到 30HZ。在实 际中,有时放大器的频带虽然达到了这一范围,但人们往往忽略了 A/D 转换器 的频带宽度,以至于造成了实际的频带宽度小于设置频宽。以众多的试验机数据 采集系统选用的 AD7705、AD7703、AD7701 等为例。当 A/D 转换器以“最高输 出数据速率 4KHZ”运行时,它的模拟输入处理电路达到最大的频带宽度 10HZ。 当以试验机最常用的 100HZ 的输出数据速率工作时,其模拟输入处理电路的实 际带宽只有 0.25HZ,这会把很多的有用信号给丢失,如屈服点的力值波动等。 用这样的电路当然不能得到正确试验结果。 2、数据采集速率太低 、 严格来说这需要许多的专用测试仪器及专业人员来完成。 严格来说这需要许多的专用测试仪器及专业人员来完成。但通过下面介绍的 简单方法,可做出一个定性的认识。当一个系统的采样分辨率达到几万分之一以 简单 上,而显示数据依然没有波动或显示数据具有明显的滞后感觉时,基本可以确定 它的通频带很窄或采样速率很低。除非特殊场合(如:校验试验机力值精度的高 精度标定仪),否则在试验机上是不可使用的。 目前模拟信号的数据采集是通过 A/D 转换器来实现的。A/D 转换器的种类很 多,但在试验机上采用最多的是∑-△型 A/D 转换器。这类转换器使用灵活,转 换速率可动态调整,既可实现高速低精度的转换,又可实现低速高精度的转换。 在试验机上由于对数据的采集速率要求不是太高, 一般达每秒几十次到几百次就 可满足需求,因而一般多采用较低的转换速率,以实现较高的测量精度。但在某 些厂家生产的试验机上,为了追求较高的采样分辨率,以及极高的数据显示稳定 性,而将采样速度降的很低,这是不可取的。因为当采样速度很低时,对高速变 化的信号就无法实时准确采集。例如金属材料性能试验中,当材料发生屈服而力 值上下波动时信号变化就是如此,以至于不能准确求出上下屈服点,导致试验失 败,结果丢了西瓜捡芝麻。 那么如何判断一个系统的频带宽窄以及采样速率的高低呢? 3、控制方法使用不当 针对材料发生屈服时应力与应变的关系(发生屈服时,应力不变或产生上下波 动,而应变则继续增大)国标推荐的控制模式为恒应变控制,而在屈服发生前的 弹性阶段控制模式为恒应力控制, 这在绝大多数试验机及某次试验中是很难完成 的。因为它要求在刚出现屈服现象时改变控制模式,而试验的目的本身就是为了 要求取屈服点,怎么可能以未知的结果作为条件进行控制切换呢?所以在现实 中,一般都是用同一种控制模式来完成整个的试验的(即使使用不同的控制模式 也很难在上屈服点切换,一般会选择超前一点)。对于使用恒位移控制(速度控制) 的试验机,由于材料在弹性阶段的应力速率与应变速率成正比关系,只要选择合 适的试验速度,全程采用速度控制就可兼容两个阶段的控制特性要求。但对于只 有力控制一种模式的试验机,如果试验机的响应特别快(这是自动控制努力想要 达到的目的),则屈服发生的过程时间就会非常短,如果数据采集的速度不够高, 则就会丢失屈服值(原因第 2 点已说明),优异的控制性能反而变成了产生误差的 原因。所以在选择试验机及控制方法时最好不要选择单一的载荷控制模式。 三、 结果处理软件的影响 目前生产的试验机绝大部分都配备了不同类型的计算机(如 PC 机,单片机 等)),以完成标准或用户定义的各类数据测试。与过去广泛采用的图解法相比有 了非常大的进步。然而由于标准的滞后,原有的部分定义,就显得不够明确。如 屈服点的定义,只有定性的解释,而没有定量的说明,很不适应计算机自动处理 的需求。这就造成了: 1、判断条件的各自设定 就屈服点而言(以金属拉伸 GB/T 228-2002 为例)标准是这样定义的: “屈服强度:当金属材料呈现屈服现象时,在试验期间达到塑性变形发生而力 不增加的应力点,应区分上屈服强度和下屈服强度。 上屈服强度:试样发生屈服而力首次下降前的最高应力。 下屈服强度:在屈服期间,不计初始瞬时效应时的最低应力。” *上下屈服强度的疑问:若材料出现上下屈服点,则必然出现力值的上下波动, 但这个波动的幅度是多少呢?国标未作解释,若取的太小,可能将干扰误求为上 下屈服点, 若取得太大, 则可能将部分上下屈服点丢失。 目前为了解决这一难题, 各厂家都想了许多的办法,如按材料进行分类定义“误差带”及“波动幅度”,这可 以解决大部分的使用问题。但对不常见的材料及新材料的研究依然不能解决问 题。为此部分厂家将“误差带”及“波动幅度”设计为用户自定义参数,这从理论上 解决了问题,但对使用者却提出了极高的要求。 这个定义在过去使用图解法时一般没有什么疑问,但在今天使用计算机处理 数据时就产生了问题。 *屈服强度的疑问:如何理解“塑性变形发生而力不增加(保持恒定)”?由于各 种干扰源的存在,即使材料在屈服阶段真的力值保持绝对恒定(这是不可能的), 计算机所采集的数据也不会绝对保持恒定, 这就需要给出一个允许的数据波动范 围,由于国标未作定义,所以各个试验机生产厂家只好自行定义。由于条件的不 统一,所求结果自然也就有所差异。 2、 对下屈服点定义中“不计初始瞬时效应”的误解什么叫“初始瞬时效应”?它 是如何产生,是否所有的试验都存在?这些问题国标都未作解释。所以在求取下 屈服强度时绝大多数的情况都是丢掉了第一个“下峰点”的。笔者经过多方查阅资 料,了解到“初始瞬时效应”是早期生产的通过摆锤测力的试验机所特有的一种现 象, 其原因是“惯性”作用的影响。 既然不是所有的试验机都存在初始瞬时的效应, 所以在求取结果时就不能一律丢掉第一个下峰点。但事实上,大部分的厂家的试 验机处理程序都是丢掉了第一个下峰点的。 四、 试验人员的影响 在试验设备已确定的情况下, 试验结果的优劣就完全取决于试验人员的综合素 质。目前我国材料试验机的操作人员综合素质普遍不高,专业知识与理论水平普 遍较为欠缺,再加上新概念、新名词的不断出现,使他们很难适应材料试验的需 求。在材料屈服强度的求取上常出现如下的问题: 1、将金属材料的屈服点与塑料类的屈服点混淆 由于金属材料与塑料的性能相差很大, 其屈服的定义也有所不同。 如金属材料 定义有屈服、上屈服、下屈服的概念。而塑料只定义有屈服的概念。另外,金属 材料的屈服强度一定小于极限强度,而塑料的屈服可能小于极限强度,也可能等 于极限强度(两者在曲线上为同一点)。由于对标准的不熟悉,往往在试验结果的 输出方面产生一些不应有的错误,如将塑料的屈服概念(上屈服)作为金属材料的 屈服概念(一般为下屈服)输出,或将无屈服的金属材料的最大强度按塑料的屈服 强度定义类推作为金属材料屈服值输出, 产生金属材料屈服值与最大值一致的笑 话。 2、将非比例应力与屈服混为一谈 虽然非比例应力与屈服都是反应材料弹性阶段与塑性阶段的过渡状态的指标, 但两者有着本质的不同。屈服是材料固有的性能,而非比例应力是通过人为规定 的条件计算的结果,当材料存在屈服点时是无需求取非比例应力的,只有材料没 有明显的屈服点时才求取非比例应力。 部分试验人员对此理解不深, 以为屈服点、 上屈服、下屈服、非比例应力对每一个试验都存在,而且需全部求取。 3、将具有不连续屈服的趋势当作具有屈服点 国标对屈服的定义指出, 当变形继续发生, 而力保持不变或有波动时叫做屈服。 但在某些材料中会发生这样一种现象,虽然变形继续发生,力值也继续增大,但 力值的增大幅度却发生了由大到小再到大的过程。从曲线上看,有点象产生屈服 的趋势,并不符合屈服时力值恒定的定义。正如在第三类影响中提到的,由于对 “力值恒定”的条件没有定量指标规定,这时经常会产生这一现象是否是屈服,屈 服值如何求取等问题的争论。 综上所述, 屈服值在材料力学性能试验中有着非常重要的作用, 但同时在求取 时又面临着许多问题, 因此无论是国标的制定部门, 还是试验机的研发生产厂商、 试验机的使用部门,都应从各自的角度出发,努力解决所存在的问题,才能实现 屈服点的准确、快速、方便的求取,为材料的安全使用创造良好的条件。微机控 制电子万能材料试验机使用说明 三、对试验机和引伸计的要求 1、试验机应符合 GB/ T16825 - 1997 规定的准确度级,并按照该标准要求检验。 2、测定各强度性能均应采用 1 级或优于 1 级准确度的试验机。 3、 引伸计是测延伸用的仪器。 应把引伸计看成是一个测量系统(包括位移传感器、 记录器和显示器) 。4、引伸计应符合 GB/ T12160 - 2002 规定的准确度级,并按 照该标准要求定期进行检验。 四、原始横截面积的测量和计算值 1、测量部位和方法 (1) 对于圆形横截面的试样,在其标距的两端及中间三处横截面上相互垂直的两 个方向测量直径,取其平均直径计算面积,取三处测得的最小值为试样的原始横截 面积 2、原始横截面积的计算值 因为原始横截面积数值是中间数据,不是试验结果数据,所以,如果必须要计算出 原始横截面积的值时,其值至少保留 4 位有效数字。 计算时,常数 π 应至少取 4 位 有效数字。 五、原始标距的标记 试样比例标距的计算值应修约到最接近 5mm 的倍数,中间数值向较大一方修约, 标记原始标距的准确度应在±1 %以内。由于标记试样标距装置的检验尚无相应 标准,因此,建议试验室应自行检查其准确度。可以用小冲点、细划线或细墨线做 标记,标记应清晰,试验后能分辨,不影响性能的测定。对于带头试样,原始标距应 在平行长度的居中位置上标出。 六、上屈服强度 ReH 和下屈服强度 ReL 的测定 (1) 图解方法(包括自动方法) 引伸计标距应≥1/ 2 L o 。 引伸计和试验机应不劣于 1 级准确度。 试验速率按 13. 1 和 13. 2 的要求。记录力-延伸曲线或力-位移曲线,或采集力-延伸(位移) 数据, 直至超过屈服阶段。按照定义在曲线上判定上屈服力和下屈服力的位置点,判定 下屈服力时要排除初始瞬时效应的影响。 上、下屈服力判定的基本原则如下: ①屈服前的第一个峰值力(第一个极大力) 判为上屈服力,不管其后的峰值力比它 大或小。 ②屈服阶段中如呈现两个或两个以上的谷值力,舍去第一个谷值力(第一个极小 值力) ,取其余谷值力中之最小者判为下屈服力。如只呈现一个下降谷值力,此谷 值力判为下屈服力。 ③屈服阶段中呈现屈服平台,平台力判为下屈服力。如呈现多个而且后者高于前 者的屈服平台,判第一个平台力为下屈服力。 ④正确的判定结果应是下屈服力必定低于上屈服力。 七、规定非比例延伸强度 Rp 的测定 常规平行线方法: 此方法仅适用于具有弹性直线段的材料测定 Rp ,使用的试验机 和引伸计均应不劣于 1 级准确度,引伸计标距≮1/ 2 L o ,试验时弹性应力速率按 标准中的表 4 要求,在进入塑性范围和直至 Fp 应变速率不超过 0. 002 5/ s。试 验时,记录力-延伸曲线或采集力-延伸数据,直至超过 Rp 对应的力 Fp 。 在记录得 到的曲线图上图解确定规定非比例延伸力 Fp ,进而计算 Rp 。 八、抗拉强度 Rm 的测定 1、图解方法(包括自动方法):图解方法要求试验机不劣于 1 级准确度,引伸计为 不劣于 2 级准确度,引伸计标距不小于试样标距的一半,试验时的应变速率不超 过 0. 008/ s (相当于两夹头分离速率 0. 48 L c/ min) 。 2、试验时,记录力-延伸曲线或力-位移曲线或采集相应的数据。在记录得到的曲 线图上按定义判定最大力。 3、对于连续屈服类型,试验过程中的最大力判为最大力 F 4、 对于不连续屈服类型,过了屈服阶段之后的最大力判为最大力 Fm ,由最大力计 算抗拉强度 Rm 。 九、断后伸长率 A 的测定 (1)人工方法:试验前在试样平行长度上标记出原始标距(误差≤±1 %) 和标距内 等分格标记(一般标记 10 个等分格) 。试验拉断后,将试样的断裂处对接在一起, 使其轴线处于同一直线上,通过施加适当的压力以使对接严密。用分辨力不劣于 0. 1mm 的量具测量断后标距,准确到±0. 25mm 以内。 1、建议:断后标距的测量应读到所用量具的分辨力,数据不进行修约,然后计算断 后伸长率。 2、如果试样断在标距中间 1/ 3 L o 范围内,则直接测量两标点间的长度; 3、如果断在标距内,但超出中间 1/ 3 L o 范围,可以采用移位方法(见标准中附录 F)测定断后标距。 4、如果断在标距外,而且断后伸长率未达到规定最小值,则结果无效,需用同样的 试样重新试验。 (2)图解方法(包括自动方法) 用引伸计系统记录力-延伸曲线,或采集力-延伸数据, 直至试样断裂。读取或判读断裂点的总延伸,扣除弹性延伸部分后得到的非比例 延伸作为断后伸长。扣除的方法是,过断裂点作平行于曲线的弹性直线段的平行 线交于延伸轴,交点即确定了非比例延伸,见标准中的图 1。 1、引伸计的标距应等于试样的原始标距,可以不在试样上标出原始标距(但建议 标出) 。 2、 建议,当断后伸长率& 5 %时,使用不劣于 1 级引伸计; ≥5 %时,使用不劣于 2 级 引伸计。 十、最大力总伸长率 Agt 和最大力非比例伸长率 Ag 的测定: (1) 图解方法(包括自动方法): 1、引伸计标距应等于或近似等于试样标距。 2、建议:当最大力总延伸率& 5 %时,使用不劣于 1 级引伸计; ≥5 %时,使用不劣 于 2 级引伸计。试验时纪录力-延伸曲线或采集力-延伸数据,直至超过最大力 点。取最大力点的总延伸计算 A gt 。 3、 从最大力总延伸中扣除弹性延伸部分得到非比例延伸,扣除的方法见标准中的 图 1 所示。用得到的非比例延伸计算 A g 。当曲线在最大力呈现一平台时,应以 平台的中点作为最大力点,见标准中的图 1 。 十一、断面收缩率 Z 的测定 : 1、圆形横截面试样断面收缩率的测定 圆形横截面试样拉断后缩颈处最小横截面并不一定为圆形横截面形状,但测定的 方法基础是建立在假定为圆形横截面形状上。这样,以测定试样原始横截面积与 断裂后缩颈处最小横截面积之差与原始横截面积之比计算断面收缩率。 2、矩形横截面试样断面收缩率的测定 按定义测定,但测定试样断后最小横截面积的方法,是基于一种假设模型并作近似 处理,即假定矩形横截面四个边为抛物线型,它的等效横截面积粗略近似为 十二、断裂总伸长率 At 的测定 1、仅采用图解方法(包括自动方法) 。 2、引伸计标距应等于试样标距。 3、建议:若断裂总延伸率& 5 %时,使用不劣于 1 级引伸计; ≥5 %时,使用不劣于 2 级引伸计。 4、试验时记录力-延伸曲线或采集力-延伸数据,直至断裂。以断裂点的总延伸计 算At 。 拉力试验机 定义及概述: 定义及概述 拉力机也称拉力试验机,拉力机是用来对材料进行拉伸、压缩、弯曲、剪切、 剥离等力学性能试验用的机械加力的试验机,适用于塑料板材、管材、异型材, 塑料薄膜及橡胶、 电线电缆、 防水卷材、 金属丝等材料的各种物理机械性能测试, 其使用行业范围遍布:科研院所、商检仲裁机构、大专院校以及橡胶、轮胎、塑 料、电线电缆、制鞋、皮革、纺织、包装、建材、石化、航空等行业,为材料开 发、物性试验、教学研究、质量控制、进料检验、生产线的随机检验等不可缺少 的检测设备, 拉力机夹具作为仪器的重要组成部分, 不同的材料需要不同的夹具, 也是试验能否顺利进行及试验结果准确度高低的一个重要因素。 拉力机选购注意事项: 一、首先应考虑需要测试材料拉力范围。 拉力范围的不同,决定了所使用传感器的不同,也就决定了拉力机的结构,但 此项对价格的影响不大(门式除外)。对于一般软包装生产厂家,拉力范围在 100 牛顿的了就已经足够。因此也决定了采用单臂式的就可以了。 与单臂式相对应结构的是门式结构,它是适应比较大的拉力,如一吨或以上。 所以软包装厂家基本用不着。 二、 试验行程的问题。 根据软包装薄膜的需要测试的性能和要求,行程在 600-800mm 就可以。材料 伸长率超过 1000%的可以选用行程 1000 或是 1200mm。 三、 标准配置问题。 智能化的三种基本配置:主机、微电脑、还有打印机,如果微电脑功能强可以 直接打印。另外也可配备普通电脑。有了电脑,就可以进行复杂的数据分析,如 数据编辑,局部放大,可调整报告形式,进行成组式样的统计分析。 如配用电脑,厂家应给加入相应控制系统。 四、输出结果。 试验结果输出结果可任意设置:最大力值、伸长率,抗拉强度、定力伸长、定 伸长力值、屈服强度,弹性模量、最大试验力 8 项。这可以说是微电脑操作时, 输出的最全面的结果。国外一些厂家的产品,一般可以输出这 8 项。国内有的厂 家可以输出 5-6 项,有的厂家就只能输出最大力值,平均值,最小值三项。 五、在可做实验项目上。 软包装要求拉力机一机多用,即在配备不同夹具的基础上,可做拉伸、压缩、 弯曲、撕裂、剪切、180 度剥离、90 度剥离试验。 市面上有一些高档拉力机除以上项目外,因其传感器精度高(有的达到二十五万 分之一)还可以测试摩擦系数。 六、产品机械主要配置: 传动,有丝杠传动和齿条传动,前者昂贵,用于高精度,测试重复性高;后者 便宜,用于低精度,测试重复性低。 丝杠,对拉力精度测量具有决定作用。一般的有滚珠丝杠,梯形丝杠,一般丝 杠。其中,滚珠丝杠的精确度最高,但是其性能的发挥要靠电脑伺服系统操作才 能发挥,整套价格也比较昂贵。采用一般丝杠和梯形丝杠就可以达到软包装所要 求的精度,即 0.5-1%精度。 传动,有齿轮传动和链条传动,前者昂贵,用于高精度;后者便宜,用于低精 度。 传感器,主要成本在于寿命,光电感应是其中比较先进的技术,一般可用十万 次以上, 进口和国内部分合资厂家可以达到更好技术是上海信任达仪器有限公司 七、试验速度。 市面设备有的在 10~500 mm/min,有的在 0.001~500 mm/min,前者一般使用 普通调速系统,成本较低,粗糙影响精度;后者使用伺服系统,价格昂贵,精度 高,对于软包装企业,选用伺服系统,调速范围 1~500mm/min 的就足够了,这 样既不影响精度,价格又在合理范围之内。 八、测量精度。 精度问题,包括测力精度,速度精度,变形精度,位移精度。这些精度值最高 都可达到正负 0.5。但对于一般厂家,达到 1%精度就足够了。另外,力值分辨 率几乎都能达到十万分之拉力机 拉力机技术参数: 1、精 度 等 级;1 级 2、测力精 度: 1N 3、速度精度:&示值的±1% 4、试验速度:0.5mm/min-500mm/min 14 个档位速度(有特殊要求时请说明)(试 验速度:0.001mm/min-500mm/min)多个档位速度 5、测力范围:50N、100N、200N、500N、1000N、 2000N、5000N 6、电源: 220 AC50Hz LDW 系列微机控制电子拉力试验机是精密级单臂高档试验机,采用单片机和 PC 机分布控制系统,具有 PC 机控制的操作平台,通过 Windows98、 Windows2000 或 WindowsXP 中文操作界面,在试验过程中时实显示试验的即 时力值、位移值、断裂值、最大力值的峰值保持、自动停车、并能动态地时实绘 制拉伸位移量与拉伸力值(压缩位移量与压缩力值)的曲线等功能,自动进行试验 数据的记录及数据的后期处理,可自动打印试验报告,实现历史存盘,以便今后 随时查询以前的试验数据,进行各种试验数据的对比研究。 DL-8500 系列微机控制电子拉力试验机完全符合 GB/T16491、GB/T1040、 GB/T8804.1、GB/T8804.2、GB/T1041、GB/T9341、GB/T8808、GB/T18477、 GB/T583、GB13022 等标准的规定,操作方便、设计合理、结构简单等特点, 在同类机型中具有优良的性能价格比。 拉力试验机的校正方法 1.拉力试验机(拉力机)的力量值校正:进入计算机程序 后于打开校正界面,按测试开始,取一标准重量砝码轻挂于上夹具连接座,记录计 算机显示力量值,并计算与标准重量砝码之差,误差应不超出±1%。 2.拉力试验机 (拉力机)的速度校正: 2.1 首先记录机台横担之初始位置,在控制面板上选择速度 值(使用标准直钢尺量测横担行程). 2.2 起动机台的同时电子秒表开始计时一分 钟,秒表到达时间的同时按下机台停止键, 根据秒表的时间,记录横担行程值即为 每分钟之速率(mm/min),观察横担行程值与直钢尺之差,并计算横担行程误差值, 应不超出±1%.
金属拉伸试验应该注意的几个问题——为大家提供各种日常写作指导,同时提供范文参考。主要栏目有:范文大全、个人简历、教案下载、课件中心、 优秀作文、考试辅导、试题库、诗词鉴赏。
相关文档:
下载文档:
搜索更多:
All rights reserved Powered by
copyright &copyright 。甜梦文库内容来自网络,如有侵犯请联系客服。|}

我要回帖

更多关于 60吨液压万能试验机 的文章

更多推荐

版权声明:文章内容来源于网络,版权归原作者所有,如有侵权请点击这里与我们联系,我们将及时删除。

点击添加站长微信