什么是四十一维空间间?

什么是四维空间?
什么是四维空间?
三维加上时间这一维,构成四维!!!!!!!
其他回答 (3)
什么是四维空间
四维空间就是指包括时间A和由长X宽Y高Z组成的包括三维空间在内的空间。
如我们走在一条狭长的隧道里,我们能走出隧道的方向只有两个——前与后;而当我们在走空旷的田野里走时,我们就会有四个方向——前、后、左、右;而当我们的宇航员在太空中表演太空漫步的时候,他的方向将有六个,前、后、左、右、上、下。那么在什么地方我们能找到第七个方向和第八个方向,即第四对方向呢。当然,那只有在四维空间里才能找到。
然而,我们所生活的空间中就存在着这对方向,它们就是时间的前与后。想一想过去所发生过的和未来将要发生的,我们就会发现实际这一切存在着连贯性。
什么是四维?现在的说法是三维空间加上时间这一维,构成所谓的四维空间。然而,这种说法是一击即破的。为什么?
  我们可以从二维来考虑。一个二维生物(如果有的话),他们考虑所谓的三维空间绝对和我们所认识的三维空间不同——它们会把时间作为第三维,因为他们无法感受这一维的存在。同样,我们现在也走进了这个误区,把时间算做第四维。可能四维生物看到我们在宣扬这种思想时,也在为我们叹息。那么时间算不算一维?在我看来,时间应该算是一维,即在多维生物本身的维度之外再加一维,构成新的N+1维空间,而且这样也有助于帮我们解决一些问题,也可以使我们对比三维维度更高的空间加深认识。
  有一个更新的构想,即所有的维度都是由时间构成,没有时间,就没有空间,包括最基本的一维空间。这应该好理解,因为没有时间,空间本身的存在就没有任何意义,因为时空本身就是不能分割的整体。那么,为什么一种时间可以形成不同的维度空间?这里,我们可以把时间看成是一种可以分解的常量。时间可以分解,这一句话理解起来可能有点困难。但是,只要想通了道理也是很简单的。要明白这个道理,首先必须了解两点。第一是时空的不可分性,这一点估计大家都明白,离开了空间谈时间,或者离开了时间谈空间,都是毫无意义的。第二点是时间的多样性,这一点了解起来可能有一点麻烦。在日常生活中,我们接触到的都是时间的合成体,也就是各个分时间有机结合形成的一个总的时间体系。可能你们会觉得我是在狡辩,其实不是。只要你们换一个角度去想,一个结果,可能是几个不同的原因形成的。就拿运动来说,我们观察到的一般都是几个不同运动产生的一种运动的结合体,即合运动。关于时间,我们也可以这样去想。我们看到的时间结合体,可以是由物体运动的时间,历史时间(即经历时间)和其他的一些时间构成。而运动时间,我们又可以看成由上下运动的时间,左右运动的时间和前后运动的时间。当然,划分方法是多样的,这就构成了时间的多样性,至于如何去划分,这就要由不同的情况而定。一部分时间对应一段空间。在这个不完整的空间里,时间起到了决定性的作用。
  我们之所以是三维生物,是以为这个维度的空间里只存在三维的时间。时间的不完整决定了空间的不完整。我们不能认识其他维度的空间,是因为我们不具备在那个空间里面运动的时间。时间的多样性决定的空间的多样性。同时,因为时间的不同分解方式,注定了我们的三维空间也是相对的,它可以被命名为一维,二维,甚至是任意维——完全取决于不同的分解方式。时间是决定维度的关键,同时,它也是决定低维物体高维存在方式的关键。
  让我们看看科学上的说法:低维是空间上的缺陷,它们不具备在高维世界内运动的空间。关于这一点,有一个疑问,那就是我们怎么可以发现这个缺陷。我们认为的低维不存在某一个空间长度,是因为我们无法确定它有那一个长度,也就是我们现在用最好的设备也无法观察到那一个长度差。那么,将来呢?我们现在无法认证,可能将来会有人证明那个低维物体确实属于高维。因此,低维与高维并不存在所谓的空间差。那么,我们如何区别高维与低维?很简单,用时间。用时间去解释任何一个维度空间,我们也可以认为,低维之所以比高维低级,是因为它们存在时间上的缺陷,它们无法在时间范畴内感受高维的存在。所以,我们要去了解低维或者高维,先要知道它们存在的时间范围。高维与低维之间可以实现转化,道理是很简单的,只要加入或者去掉一个时间单位就可以了。然而说起来很容易,做起来却很复杂,我们对时间的概念都是如此模糊,要想在空间范围类实现时间的转化就更困难。
  对四维空间,一般人可能只是认为在长、宽、高的轴上,再加上一根时间轴,但对于其具体情况,大部分的人仍知之甚少。有一位专家曾打过一个比方:让我们先假设一些生活在二维空间的扁片人,他们只有平面概念。假如要将一个二维扁片人关起来,只需要用线在他四周画一个圈即可,这样一来,在二维空间的范围内,他无论如何也走不出这个圈。现在我们这些生活在三维空间的人对其进行“干涉”。我们只需从第三个方向(即从表示高度的那跟轴的方向),将二维人从圈中取出,再放回二维空间的其他地方即可。对我们这些三维人而言,四维空间的情况就与上述解释十分类似。如果我们能克服四维空间,那么,在瞬间跨越三维空间的距离也不是不可能。
等待您来回答
学习帮助领域专家
当前分类官方群专业解答学科习题,随时随地的答疑辅导什么是四维空间??
什么是四维空间?? 100
请详细说明一下,
解释为什么会出现四维空间??
有没有五维,六维空间呢??
如何克服四维空间的束缚??
首先谈下物理世界的第四个独立的方向——时间。平常我们在街上与朋友相遇时,一般都不只说出它发生在何处,还要说出发生在何时。因此,除表示空间位置的三个方向要素之外,又增添了一个要素——时间。
进一步考虑,很容易意识到,所有的实际物体都是四维的,三维属于空间,一维属于时间。从这个新观点出发,一个四维正方体就只是一个存在了一段时间的普通立方体。
在四维时空几何学的词汇中,表示每一个单独物质微粒历史的线叫做“时空”线。
下面谈时空当量。如果面临一个四维正方体,它的三个空间尺寸都是1米,那么应该取多长的时间间隔,才能使四个维相等呢?
应该取多长的时间间隔,才能使四个维相等呢?是1秒,还是1小时,还是一个月?1小时比1英尺长还是短?乍一看,这个问题似乎毫无意义。不过,深入想一下,你就会找到一个比较长度和时间间隔的合理办法。你常听人家说,某人的住处“搭公共汽车只需20分钟”、某某地方“乘火车5小时便可到达”。这里,我们把距离表示成某种交通工具走过这段距离所需要的时间。
因此,如果大家同意采用某种标准速度,就能用长度单位来表示时间间隔,反之亦然。很清楚,我们选用来作为时空的基本变换因子的标准速度,必须具备不受人类主观意志和客观物理环境的影响、在各种情况下都保持不变这样一个基本的和普遍的本质。物理学中已知的唯一能满足这种要求的速度是光在真空中的传播速度,即光速,更恰当些说是“物质相互作用的传播速度”。
第一次测定光速的实验是著名的意大利物理学家伽利略在17世纪进行的,尽管伽利略的这项实验没有导致任何有意义的成果,但他的另一发现,即木星有卫星,却为后来首次真正测定光速的实验提供了基础。1675年,丹麦天文学家雷默利用木星卫星的蚀时,测的光速大约为每秒钟185000英里。继两位先驱之后,人们又用各种天文学方法和物理学方法做了一系列独立的测量。目前,光在真空中的速度的最令人满意的数值是c=299776公里/秒。在量度天文学上的距离时,用速度极高的光速作为标准就很便当了。因此,天文学家说某颗星离我们5“光年”远,就象我们说去某地乘火车需要5小时一样。由于1年合秒,1光年就等于0公里。采用“光年”这个词表示距离,实际上已把时间看做一种尺度,并用时间单位来量度空间了。
在解决了空间轴和时间轴上的单位如何进行比较的问题之后,我们现在可以问:在四维时空世界中两点间的距离应该如何理解?要记住,现在每一个点都是空间和时间的结合,它对应于通常所说的“一个事件”。为了弄清这一点,让我们看看下面的两个事件。假设:
事件1:日上午9点21分,北京市五马路和第五十街交叉处一层楼的一家银行被劫。
事件2:同一天上午9点36分,一架军用飞机在雾中撞在北京第三十四街和五、六马路之间的蓝天大厦第七十九层楼的墙上。
这两个事件,在空间上南北相隔16条街,东西相隔半条街,上下相隔78层楼;在时间上相隔15分钟。很明显,表达这两个事件的空间间隔不一定要注意街道的号数和楼的层数,因为我们可用大家熟知的毕达哥拉斯定理,把两个空间点的坐标距离的平方和开方,变成一个直接的距离。为此,必须先把各个数据化成相同的单位,比如说用英尺表示出来。如果相邻两街南北相距200英尺,东西相距800英尺,每层楼平均高12英尺,这样,三个坐标距离是南北3200英尺,东西400英尺,上下936英尺。用毕达哥拉斯定理可得出两个出事地点之间的直接距离为3360英尺。
如果把时间当作第四个坐标的概念确有实际意义,我们就能把空间距离3360英尺和时间距离15分钟结合起来,得出一个表示两事件的四维距离的数来。
三维空间也就是我们所说的立体空间就是由X,Y,Z三个轴既横坐标、纵坐标、垂直坐标组成的空间在这个空间里时间是无法改变的我们只能从这个点到那个点(理论上这么说。其实我们是飞不了的对不?就算有飞行器也不是哪个点都能到达这里还有别的复杂原因但是大部分还是可以到达的)四维空间是指在三维空间加上时间空间也就是说时间也是个轴我们可以改变时间就想我们可以改变我们现在的位置一样。当然这只是某些科学设想的需要而出现的具体有没有我们无法知道但是宇宙这么大要是连个四维空间都没有那岂不是浪费了吗??鄙人拙见 见笑了
传统上认为的空间是3维的欧几里德空间
如果说4维,那就是指时间+空间了,4维的时空连续统
其他的维度可就没见过了
有的理论里出现23维啦,之类的数字,可是那都还只是数字,我们甚至不知道有什么意义.
先想想2维空间
以其中一点为圆心画圆
一个一个画
半径逐渐增大
如果你是球上的一个人
你会发现圆的边渐渐便直
然后再向另一个顶点聚拢
这时,圆圈便凹向另一边
同样也是3维
你进入了一个有限的3维空间
你吹一个很结实的一个气球
在你的眼睛看来
你面前的这半面气球
是凸向你的
当气球的体积占空间总体积的一半
你面前的这半气球面变成平面
你面前的气球面便变凹了
气球就把你包了进去
如果你还继续吹
你就会被气球挤住
你不能像想有限无界的三维空间的样子
因为我们就在欧几里得三维空间
这个空间是一个无限平面的三维空间
就像我们只能想象前面的球面试验
而我们一旦进入那个球面空间
我们也看不出圆周变直继而向另一边弯曲的奥秘
你有兴趣了解这方面的知识
看看《几何傻瓜》这本书
其他回答 (10)
四维空间是一个时空的概念。简单来说,任何具有四维的空间都可以被称为“四维空间”。不过,日常生活所提及的“四维空间”,大多数都是指爱因斯坦在他的《广义相对论》和《狭义相对论》中提及的“四维时空”概念。根据爱因斯坦的概念,我们的宇宙是由时间和空间构成。时空的关系,是在空间的架构上比普通三维空间的长、宽、高三条轴外又加了一条时间轴,而这条时间的轴是一条虚数值的轴。
根据爱因斯坦相对论所说:我们生活中所面对的三维空间加上时间构成所谓四维空间。由于我们在地球上所感觉到的时间很慢,所以不会明显的感觉到四维空间的存在,但一旦登上宇宙飞船或到达宇宙之中,使本身所在参照系的速度开始变快或开始接近光速时,我们能对比的找到时间的变化。如果你在时速接近光速的飞船里航行,你的生命会比在地球上的人要长很多。这里有一种势场所在,物质的能量会随着速度的改变而改变。所以时间的变化及对比是以物质的速度为参照系的。这就是时间为什么是四维空间的要素之一。
四维空间指三维立体空间与时间的总和。
英国著名物理学家史蒂芬·霍金教授有这样的解释:这就像一根头发,远看是一维的线,在放大镜下,它确实是三维的;如果面对时空,如果有足够高倍的放大镜的话,也应该能揭示出其它可能存在的4维、5维空间,直至11维空间。因此,维度是指一种视角,而不是一个固定的数字;是一个判断、说明、评价和确定一个事物的多方位、多角度、多层次的条件和概念。
至于科学详解,只能问牛点的大学物理老师了,一般的教授对这个问题的看法都不是很深入
四维空间概念
四维空间是一个时空的概念。简单来说,任何具有四维的空间都可以被称为“四维空间”。不过,日常生活所提及的“四维空间”,大多数都是指爱因斯坦在他的《广义相对论》和《狭义相对论》中提及的“四维时空”概念。根据爱因斯坦的概念,我们的宇宙是由时间和空间构成。时空的关系,是在空间的架构上比普通三维空间的长、宽、高三条轴外又加了一条时间轴,而这条时间的轴是一条虚数值的轴。
根据爱因斯坦相对论所说:我们生活中所面对的三维空间加上时间构成所谓四维空间。由于我们在地球上所感觉到的时间很慢,所以不会明显的感觉到四维空间的存在,但一旦登上宇宙飞船或到达宇宙之中,使本身所在参照系的速度开始变快或开始接近光速时,我们能对比的找到时间的变化。如果你在时速接近光速的飞船里航行,你的生命会比在地球上的人要长很多。这里有一种势场所在,物质的能量会随着速度的改变而改变。所以时间的变化及对比是以物质的速度为参照系的。这就是时间为什么是四维空间的要素之一。
解析四维空间
什么是四维?现在的说法是三维空间加上时间这一维,构成所谓的四维空间。然而,这种说法是一击即破的。为什么?
我们可以从二维来考虑。一个二维生物(如果有的话),他们考虑所谓的三维空间绝对和我们的三维空间不同——他们会把时间作为第三维,因为他们无法感受这一维的存在。同样,我们现在也走进了这个误区,把时间算做第三维。可能四维生物看到我们在宣扬这种思想时,也在为我们叹息。那么时间算不算一维?在我看来,时间应该是一维,即在多维生物本身的维度之外再加一维,构成新的N+1维空间,而且这样也有助于帮我们解决一些问题,也可以使我们对比三维维度更高的空间加深认识。
有一个更新的构想,即所有的维度都是由时间构成,没有时间,就没有空间,包括最基本的一维空间。这应该好理解,因为没有时间,空间本身的存在就没有任何意义,因为时空本身就是不能分割的整体。那么,为什么一种时间可以形成不同的维度空间?这里,我们可以把时间看成是一种可以分解的常量。时间可以分解,这一句话理解起来可能有点困难。但是,只要想通了道理也是很简单的。要明白这个道理,首先必须了解两点。第一是时空的不可分性,这一点估计大家都明白,离开了空间谈时间,或者离开了时间谈空间,都是毫无意义的。第二点是时间的多样性,这一点了解起来可能有一点麻烦。在日常生活中,我们接触到的都是时间的合成体,也就是各个分时间有机结合形成的一个总的时间体系。可能你们会觉得我是在狡辩,其实不是。只要你们换一个角度去想,一个结果,可能是几个不同的原因形成的。就拿运动来说,我们观察到的一般都是几个不同运动产生的一种运动的结合体,即合运动。关于时间,我们也可以这样去想。我们看到的时间结合体,可以是由物体运动的时间,历史时间(即经历时间)和其他的一些时间构成。而运动时间,我们又可以看成由上下运动的时间,左右运动的时间和前后运动的时间。当然,划分方法是多样的,这就构成了时间的多样性,至于如何去划分,这就要由不同的情况而定。一部分时间对应一段空间。在这个不完整的空间里,时间起到了决定性的作用。
我们之所以是三维生物,是以为这个维度的空间里只存在三维的时间。时间的不完整决定了空间的不完整。我们不能认识其他维度的空间,是因为我们不具备在那个空间里面运动的时间。时间的多样性决定的空间的多样性。同时,因为时间的不同分解方式,注定了我们的三维空间也是相对的,它可以被命名为一维,二维,甚至是任意维——完全取决于不同的分解方式。时间是决定维度的关键,同时,它也是决定低维物体高维存在方式的关键。
让我们看看科学上的说法:低维是空间上读缺陷,它们不具备在高维世界内运动的空间。关于这一点,有一个疑问,那就是我们怎么可以发现这个缺陷。我们认为的低维不存在某一个空间长度,是因为我们无法确定它有那一个长度,也就是我们现在用最好的设备也无法观察到那一个长度差。那么,将来呢?我们现在无法认证,可能将来会有人证明那个低维物体确实属于高维。因此,低维与高维并不存在所谓的空间差。那么,我们如何区别高维与低维?很简单,用时间。用时间去解释任何一个纬度空间,我们也可以认为,低维之所以比高维低级,是因为它们存在时间上的缺陷,它们无法在时间范畴内感受高维的存在。所以,我们要去了解低维或者高维,先要知道它们存在的时间范围。高维与低维之间可以实现转化,道理是很简单的,只要加入或者去掉一个时间单位就可以了。然而说起来很容易,做起来却很复杂,我们对时间的概念都是如此模糊,要想在空间范围类实现时间的转化就更困难。
对四维空间,一般人可能只是认为在长、宽、高的轴上,再加上一根时间轴,但对于其具体情况,大部分的人仍知之甚少。有一位专家曾打过一个比方:让我们先假设一些生活在二维空间的扁片人,他们只有平面概念。假如要将一个二维扁片人关起来,只消用线在他四周画一个圈即可,这样一来,在二维空间的范围内,他无论如何也走不出这个圈。现在我们这些生活在三维空间的人对其进行“干涉”。我们只需从第三个方向(即从表示高度的那跟轴的方向),将二维人从圈中取出,再放回二维空间的其他地方即可。对我们这些三维人而言,四维空间的情况就与上述解释十分类似。如果我们能克服四维空间,那么,在瞬间跨越三维空间的距离也不是不可能。
物理世界的四维空间
在数学上有各种多维空间,但目前为止,我们认识的物理世界只是四维,即三维空间加一维时间。现代微观物理学提到的高维空间是另一层意思,只有数学意义。
四维时空是构成真实世界的最低维度,我们的世界恰好是四维,至于高维真实空间,至少现在我们还无法感知。我在一个帖子上说过一个例子,一把尺子在三维空间里(不含时间)转动,其长度不变,但旋转它时,它的各坐标值均发生了变化,且坐标之间是有联系的。四维时空的意义就是时间是第四维坐标,它与空间坐标是有联系的,也就是说时空是统一的,不可分割的整体,它们是一种”此消彼长”的关系。
四维时空不仅限于此,由质能关系知,质量和能量实际是一回事,质量(或能量)并不是独立的,而是与运动状态相关的,比如速度越大,质量越大。在四维时空里,质量(或能量)实际是四维动量的第四维分量,动量是描述物质运动的量,因此质量与运动状态有关就是理所当然的了。在四维时空里,动量和能量实现了统一,称为能量动量四矢。另外在四维时空里还定义了四维速度,四维加速度,四维力,电磁场方程组的四维形式等。值得一提的是,电磁场方程组的四维形式更加完美,完全统一了电和磁,电场和磁场用一个统一的电磁场张量来描述。四维时空的物理定律比三维定律要完美的多,这说明我们的世界的确是四维的。可以说至少它比牛顿力学要完美的多。至少由它的完美性,我们不能对它妄加怀疑。
在狭义相对论中,时间与空间构成了一个不可分割的整体——四维时空,能量与动量也构成了一个不可分割的整体——四维动量。这说明自然界一些看似毫不相干的量之间可能存在深刻的联系。在今后论及广义相对论时我们还会看到,时空与能量动量四矢之间也存在着深刻的联系。
就是在空间的架构上加上时间概念
三维:长.宽.高.再加时间就是四维
四维空间是在三维基础上加上时间概念而形成的空间概念,
五维空间是指多个空间(不过现在正在证明中)
哎呀!上次看一个节目,说了一下!我试着解释一下吧!
For example(举个例子),
把三维空间比喻成一个球体,再想像此球体里面有一只蚂蚁。
在三维空间里面,有两个出口可以让蚂蚁出去,但是呢!蚂蚁也可以
不从这两个出口出去,而这第三个出口,就是所谓的三维空间。
依次类推,四维空间也是同样的道理!
大概就是这样吧!
太深奥了,很长见识。
等待您来回答
理工学科领域专家维基百科,自由的百科全书
「四维」重定向至此。關於國之四维「禮義廉恥」,詳見「」。
從三维投影看,一个在四维空間中绕一个平面旋轉的。
在和中,一个n个数的可以被理解为一个n维中的。当n=4时,所有这样的位置的集合就叫做四维空间。这种空间与我们熟悉并在其中居住的不同,因为它多一个维数。
一般人说到“四维空间”时,经常是误指在他的和中提及的四维时空(叫做)概念。
这种普遍性的误用,是由于相对论的相关科普和文艺作品的流行。
关于这一点,考克斯特曾写道:
把时间作为第四维数带来的好处即使有的话也是微不足道的。实际上,H. G. 威尔在《时间机器》中发展的这种十分吸引人的观点导致了J. W. 杜恩(《时间实验》)等作者对相对论的非常错误的理解。闵可夫斯基的时空几何是不符合欧几里得体系的,所以也就与当前的研究没有关系。- , Regular Polytopes
一个有四个空间性维数的空间(“纯空间性”的四维空间),或者说有四个两两的运动方向的空间。这种空间就是数学家们用来研究四维几何物体的空间。
从数学方面讲,普通三维空间集合的四维等价物是,一个四维欧几里得。一个向量的“长度”
以标准基底表示就是
也就是向四维空间进行的很自然的类比。这就让两个向量之间的夹角很容易定义了(参见)。
在我们熟悉的三维空间里,有三对主要方向:上下(高度),南北(纬度),东西(经度)。这三对方向两两,也就是说,它们两两成直角。从数学方面讲,它们在三条不同的x、y、z上。计算机图形学中讲的指的就是这条z轴,在计算机的二维屏幕上代表深度。
纯空间性的四维空间另有一对垂直于其他三个主要方向的主要方向。这一对方向处在另一条同时垂直于x、y、z轴的坐标轴上,通常称作w轴。对这两个方向的命名,人们的看法不一。一些现行的命名有安娜/卡塔,斯皮希图/斯帕提图,维因/维奥,和宇普西龙/德尔塔。这些额外的方向处于(实际上是垂直于)我们所能观察到的三维世界中的方向之外。
   
   
本条目需要精通或熟悉本主题的编者参与及协助编辑。
請適合的人士。更多的細節與詳情請參见。您可以关注您所擅长领域的专家关注分类。
从一维到五维物体的演示。
可以以的形式理解。一个同样由和(又叫做)组成,它可以认为是对从一个点到另一个点向某个方向移动一定的长度的这个过程的描述。是一个长度为零的特殊向量,也就是描述“不移动”这个过程的向量。
数学上四维空间可以简单理解为有四个的空间,即在中需要4个来描述其中一点的。 假设一个描述四维空间中一个点的向量为a,有
上式也可以写成由4个(如e1, e2, e3, e4)表示的形式,则
所以a可化为
四维向量的,和和的一致。空间向量中的(或称为向量的“”、)也被推广到四维向量中,如
下式可以用于一个四维向量的长度
而两个向量的可由下式或计算
(或称为向量的“”、)是一个,而空间向量的定义为
这是的求值,以基底(e12, e13, e14, e23, e24, e34)在四维空间中的双矢构成了,它们可以被用来在四个方向产生。
通过改变一个四维向量的长度而不改变它的方向,我们可以对一个向量进行。这可以被想象成沿着原向量的方向伸长或缩短一段长度。一个长度为的向量与和它方向相反、长度相等的正数的向量互为。这可以想象成面沿着原向量的方向倒着走。
如果沿着两个首尾相接的向量运动,那么描述这种运动的直接结果的向量就叫做这两个向量的向量和。例如,如果一个人从点A开始沿某一向量运动到点B,又从点B开始沿另一个向量运动到点C,那么这两个向量的和向量就是从点A径直到点C的向量。
给定一组四维向量,我们可以对它们进行任意的伸缩和求和操作来得到新的四维向量。以这种方式得到的所有的四维向量的集合就叫做这一组向量的。这种组合可以认为是一个点通过沿着一组向量中的某些向量移动所能达到的所有位置的集合。
给定X和S,如果从几何图形X内的一个点出发,沿着向量集合S的线性组合中的向量运动,能够到达X内所有其它的点,那么我们就说这个向量集合S可以张出几何图形X。
能够张出一个几何图形X的最小向量集合叫做X的一组。不是所有的向量集合都是基底,因为它们可能含有赘余的向量。如果一个向量能通过集合中其他向量经过伸缩、求和而得到,那么这个向量就是赘余的。例如,如果一个集合中有两个平行的向量,那么它们中的一个可以被移除而 X 中的所有点仍然可以达到,因为能通过那个被移除的向量达到的点一定可以通过那个与它平行的向量达到。或者,如果一个向量是其他两个的和,那么它也完全可以被移除。零向量总是赘余的,因为它并不能让一个人达到任意一个除他已经能够达到的点之外的点。
通过把任意一个可以张出几何图形X的向量集合中的所有赘余向量移除,我们可以过的一组X的基底。选定的初始向量集合不同,获得的能张出 X 的基底也可能不同;但是,可以证明所有这些基底中都含有相同数量的向量。这个数量就叫做X的维数。换句话说,如果 X 最少需要n个向量来张出它,那么X就是n维的。
直观地,一个图形的维数可以认为是一个人要想达到这个图形中所有的点,需要运动的所有不同方向的数目。
例如,一个是一个零维图形。我们不需要任何向量来张出它,因为如果我们从这个点出发,我们已经到达了它所有的位置。
一条是一个一维图形。从直线的某一个点上出发,我们需要一个指向这个直线的方向的向量来到达到直线上的其他点。只要一个向量就足够了,因为通过不同程度的伸缩它我们可以到达直线上的任意其他点。
一个是一个二维图形。给定平面上的一个起始点,我们至少需要两个互不平行的向量来张出这个平面。如果只有一个向量,我们只能到达某一条直线上的所有点;所以我们需要有另一个与它不平行的向量来往这条直线的“两边”走,从而到达平面上的其他点。只要两个方向就足够了,因为我们可以顺着(或逆着)前一个向量走不同的距离,再往两边走不同的距离来到达平面上的任意点。也可以把平面理解成许多平行线的“堆积”;要想在二维平面上从一点运动到另一点,我们需要首先沿着线平行线运动,再穿过这些平行线向另一个方向运动。
在我们的眼中,是三维的。要达到空间中的某一点,我们不仅要向前向后、向两边走,还需要上下移动。换句话说,需要第三个向量才能到达空间中的所有点。同样,也可以把空间理解成许多平行平面的堆积:要想在空间中从一点运动到另一点,我们可以先沿着一个方向前后走,再向两边走,最后上下走。
四维空间则是一个需要四个不同方向才能到达其中所有点的空间。这种空间可以认为是许多平行的三维空间的堆积。要理解这个概念,想象一下把一张张纸并列叠起来的过程。如果人不把它们一个个堆叠起来,这些纸张不会延伸进三维空间。以同样的方式,要想进入四维空间,就必须向一个新的方向运动,这个方向必须是在三维空间以外的。要达到四维空间中的每一个点,一个人不仅需要向前后、左右、上下移动,还要沿着一对新的方向运动,即上文提到的安娜/卡塔,或者叫维因/维奥等等。
要理解四维空间的本性,我们可以通過與低維度類比進行推廣。维数类比是指通过研究n - 1维与n维之间的关系,来推断n维与n + 1维之间会有什么样的关系。
在他的书中运用维数类比,讲述了在一个扁平得就像一张纸的二维世界中生活的一个正方形的故事。在这个正方形的眼中,生活在三维世界中的人们拥有近乎神的力量,因为他们能在不打破(二维的)保险箱的情况下从其中把东西(通过移入移出三维空间的方法)取出,能看到所有在二维世界看来是被挡在墙后面的东西,甚至能站在离二维世界几英寸的地方来保持“隐形”。
通过应用维数类比,人们可以推断,四维空间中的人在我们三维的视角看来应该有类似的神奇能力。在他的小说《》(Spaceland)中展示了这一点。小说的主人公就遇到了具有神奇能力的四维人。
是应用维数类比来想象四维空间的一种有效方法。射影是指用n - 1维空间中的图形来代表n维空间中的图形。比如说,电脑屏幕是二维的,而所有三维的人、地方、东西等等的照片都是以射影的形式展现在二维平面上的。这会把三维世界中的深度去除,代之以间接的信息。人的也是由一层二维的构成的,但是人脑能够察知三维物体的真实形状;这是根据阴影、、等间接信息推断得来的。们经常利用透视来赋予二维的图画一种三维(也就是立体)的感觉。
相似地,四维空间中的物体可以以数学的方法射影到三维空间中,从而使观察它们变得更容易。在这种情况下,一个四维的眼的“视网膜”是由一个三维“层”的感受器构成的。假设一个人有这样一只眼,他就可以根据三维图形中的间接信息推断出四维物体的真实形状。
三维物体在人眼视网膜上留下的透视射影会造成近大远小的现象,这样大脑就可以推断出三维的深度。以同样的方式,四维物体的透视射影会造成相似的“近大远小”的效果。通过应用维数类比,我们可以从这种效果中推断出四维的“深度”。
下面的图片演示了这种规律。我们可以比较一下三维的和类似的四维的三维射影。
左边的图片是正对着一个面看到的正方体。四维中超正方体类似的视角是正对一个胞看到的透视射影,也就是右边的图显示的。就像正方体的投影是一个正方形一样,超正方体的投影是一个正方体。 需要注意的是,正方体的其他5个面在这里是看不见的。它们被看的见的这个面挡住了。相似地,超正方体的其他7个胞也是看不见的,因为它们被看得见的这个胞“挡住”了。但是,这个胞的6个体,却是全见的。而且不是左图中以透视的方式展现的“全见”,而是犹如我们可以普通的全见整个正方形的四条边和内部一样,4维世界的人的眼,是直接全见整个正方体的6个面和内部的。
左边的图片是正对着一条边看到的正方体。超正方体类似的视角是正对一个面看到的透视射影(右边的图)。就像正方体正对边的投影是两个一样,超正方体正对面的投影是两个。 在这个视角中,正方体离我们最近的边是红色的面与绿色的面的公共边。同样,超正方体里我们最近的面是红色的胞与绿色的胞的公共面。
左边是一个正对顶点看到的正方体。这与右边超正方体的正对一条边看到的透视射影相似。就像正方体正对顶点的投影由三个共用一点的梯形组成一样,超正方体正对边的投影由三个共用一边的组成。正方体离我们最近的顶点是三个面的公共点,而超正方体离我们最近的边是投影体中部的三个胞的公共边。
我们还可以把正方体的正对边射影和超正方体的正对边射影放在一起,作一个类比。正方体的射影有两个梯形共用一边,而超正方体的射影有三个六面体共用一边。
左边是正方体正对点的射影,右边则是超正方体正对一个顶点的透视射影。正方体的正对点射影有三个围绕一点的四边形,而超正方体的正对点射影有四个围绕一点的六面体。正方体离我们最近的顶点是位于投影图形中部的三个面的公共点,而超正方体离我们最近的点也是位于投影体中部的,四个胞的公共点。 注意正方体的六个面中,只有三个能被看到,因为其它三个面在正方体的另一边,被这三个面挡住了。相似地,超正方体的八个胞中只有四个能被看到,因为其它四个胞在超正方体的另一边(在四维深度中离我们这一边更远的一边),被看得见的四个胞挡住了。
一個與射影有密切關係的方法是把四维幾何體的陰影在三维空間中顯示出來。
假設有一束光射向一個三维物體,則其陰影會在二维平面上顯示出來。如此類推,光射向二维物體會產生一维陰影,射向一维物體會產生零维陰影,也就是無光的一點;另一方面,光射向四维物體會產生三维陰影。
如果一個立方體的線框置於光源下,其陰影為一正方形位於另一正方形以内,並且相對的點相連。同樣,如果置於光源下,其陰影便會是一三维正方體位於另一正方體之内,並且相對的點相連。(注意,此處顯示的圖片乃四维正方體的三维陰影在二维平面上的投影。)
维度類比法也可幫我們推論出高维度物體的基本屬性。例如,二维物體有一维的邊界,正方形的邊界為一维的線;三维物體有二维的邊界(表面),正方體的表面為二维的平面。我們可以推論,四维物體便有三维的“邊界”,就是超正方體的外圍是三维的正方體。以上屬性對如何表達四维物體的三维投影很有幫助。
作爲三维空間中的生物,我們的眼睛只能看到這個世界的二维投影。生活在四维空間的生物便能看到它們的世界的三维投影。例如,它們可以同時看到一個正方體的所有六面,還能同時看到正方體中的物體;其實我們也可以同時看到二维平面上的正方形的全部四條邊及其中的物體。四维生物能同一時間看到三维空間中的所有點、物體和物體的内部,這些是我們在三维空間中看不到的。
類比法是理解高维度空間的一項很好的方法,但我們若不經過更進一步的計算仍不可以妄下結論。以下是圓形周長公式:
及球體表面積公式: 。 有人可能會立即推論出超球體的表面體積為或,但實際上兩者均為錯誤。正確公式為。
四维幾何比三维幾何豐富得多,因爲其額外的维度提供了更多的自由空間。
三维空間中,我們可以從做出;同樣地,在四维空間中我們可以從多面體做出(四维多胞形)。三维空間中存在5種正多面體,以稱之;而四维空間中存在6種,均從柏拉圖立體類比而成。三维空間中存在13種(阿基米德立體),而在四维空間中存在58種。
在三维空間,我們可以把圓形向第三维度拉伸形成。而在四维空間,我們可以向第四维度拉伸球體形成球柱體(球體為“蓋”的柱體),或拉伸圓柱體形成圓柱棱體。我們還可以取兩個球體的得到一個。以上三種均可在四维中“滾動”,但各有不同的屬性。
三维中,曲綫可以形成,但曲面並不可以(除非互相交叉穿越)。但在四维中,以曲面形成的結可以經過延伸到第四维度而解開。由於自由度更大,四维中的曲面結比三维中的綫結要複雜的多。便是其中一個例子。另一例子為。
在中與P0點有相同距離R的所有點的集合能形成一個,稱爲。此超曲面之包含空間的超體積為:
這是中的,其中R由R(t)代替,t代表宇宙年齡。R值的隨時間的加大或減低表示宇宙膨脹或收縮,這取決於宇宙質量密度。
Coxeter, H. S. M. (1973). Regular Polytopes, Dover Publications, Inc., p. 119.
(1994). : A Scientific Odyssey Through Parallel Universes, Time Warps, and the Tenth Dimension, Part I, chapter 3, The Man Who "Saw" the Fourth Dimension (about s in years 1870 - 1910). .
Flatland: A Romance of Many Dimensions. By Edwin A. Abbott, Published by Filiquarian Publishing, LLC., 2007. , 5, 148 pages
Spaceland: A Novel of the Fourth Dimension. By Rudy Rucker, Published by Tom Doherty Associates, LLC, 2002. , 0, 304 pages
Ray d'Inverno (1992), Introducing Einstein's Relativity, , chp. 22.8 Geometry of 3-spaces of constant curvature, p.319ff,
:隐藏分类:}

我要回帖

更多关于 十一维空间 的文章

更多推荐

版权声明:文章内容来源于网络,版权归原作者所有,如有侵权请点击这里与我们联系,我们将及时删除。

点击添加站长微信