到底是投ISIJ还是advanced materialss amp;Design

Microstructural stability of 9--12%Cr ferrite/martensite heat-resistant steels
&&&&DOI: 10.-013-0189-5
REVIEW ARTICLE
Microstructural stability of 9--12%Cr ferrite/martensite heat-resistant steels
Wei YAN, Wei WANG, Yi-Yin SHAN, Ke YANG()
Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016, China
(1982 KB) &
Abstract&&The microstructural evolutions of advanced 9--12%Cr ferrite/martensite heat-resistant steels used for power generation plants are reviewed in this article. Despite of the small differences in chemical compositions, the steels share the same microstructure of the as-tempered martensite. It is the thermal stability of the initial microstructure that matters the creep behavior of these heat-resistant steels. The microstructural evolutions involved? in? 9--12%Cr ?ferrite ?heat-resistant ?steels ?are ?elabo- rated, including (1) martensitic lath widening, (2) disappearance of prior austenite grain boundary, (3) emergence of subgrains, (4) coarsening of precipitates, and (5) formation of new precipitates, such as Laves-phase and Z-phase. The former three microstructural evolutions could be retarded by properly disposing the latter two. Namely improving the stability of precipitates and optimizing their size distribution can effectively exert the beneficial influence of precipitates on microstructures. In this sense, the microstructural stability of the tempered martensite is in fact the stability of precipitates during the creep. Many attempts have been carried out to improve the microstructural stability of 9--12%Cr steels and several promising heat-resistant steels have been developed.
Corresponding Authors:
YANG Ke,Email:kyang@&&&
Issue Date: 05 March 2013
Articles by authors
Cite this article: &&
Wei YAN,Wei WANG,Yi-Yin SHAN, et al. Microstructural stability of 9--12%Cr ferrite/martensite heat-resistant steels[J]. Front Mater Sci,
&&&&&OR &&&&
Tab.1&&Chemical compositions of typical 9-12%Cr steels
Fig.1&&Schematic microstructure of the as-tempered martensite steel. (Reproduced with permission from Ref. [], Copyright 2006 Elsevier)
Fig.2&&Creep rupture strength of ferritic heat-resistant steels. (Reproduced with permissions from Refs. [-], Copyright 1997 and 2010 Elsevier)
Fig.3&&Schematic illustration of creep strength mechanism map. (Reproduced with permissions from Refs. [-], Copyright 1997 and 2010 Elsevier)
Fig.4&&TEM images of the 10%Cr steel under different creep conditions (600°C): 436 h at 320 MPa; 723 h at 300 MPa; 1599 h at 280 MPa; 3230 h at 250 MPa; 8354 h at 210 MPa; as-tempered. (Reproduced with permission from Ref. [], Copyright 2011 JMST)
Fig.5&&Migration process of lath boundary during tempering at 667°C: 131 133 136 147 210 min. (Reproduced with permission from Ref. [], Copyright 2003 Maney Publishing)
Fig.6&&TEM images showing the disappeared prior grain boundaries in a 10%Cr steel crept at 210 MPa and 600°C for 8354 h.
Fig.7&&Micrographs illustrating subgrain evolution in CLAM steel: as creep at 600°C for 98 aging at 600°C for 5000 aging at 650°C for 3000 h.
Fig.8&&Micrograph showing the formation of subgrains in the interrupted creep sample of CLAM steel at 600°C under load of 100 MPa.
Fig.9&&TEM observations of the dislocation features for a T91 specimen: = 0.01; = 0.06 ( = 620 K). (Reproduced with permission from Ref. [], Copyright 2010 Elsevier)
Fig.10&&Schematically illustrating the evolution of martensite into subgrains.
Fig.11&&TEM images showing the pinning effect of MC on subgrain boundaries in CLAM steel: crept sample at 600°C for 632 h under 150 MPa; aging sample at 650°C for 5000 h.
Fig.12&&Microstructures of P91 steel as received and after creep at 600°C for 113,431 h (gauge). Typical EDS (field-emission-gun scanning electron microscope (FEG-SEM)) spectra for MC carbides, Laves-phases and matrix, respectively. (Reproduced with permission from Ref. [], Copyright 2010 Elsevier)
Fig.13&&MX carbonitrides in a 9%Cr steel showing the stability of MX carbonitrides: as- aging at 650°C for 4000 h.
Fig.14&&Rectangular Laves-phase particles distributed along the lath boundary in a 10%Cr steel crept at 600°C: 250 MPa for
MPa for 723 h.
Fig.15&&TEM graphs illustrating the growth of Laves-phase in the steel crept with load of 80 MPa at 600°C for 200 h: 10Cr-6W; 10Cr-6W-3Co. (Reproduced with permission from Ref. [], Copyright 2001 ISIJ)
Fig.16&&Schematic diagram showing the nucleation and growth process of Laves-phase. (Reproduced with permission from Ref. [], Copyright 2006 Springer)
Fig.17&&Series micrographs of FeW precipitation in δ-ferrite of 9Cr-4W steel. (Reproduced with permission from Ref. [], Copyright 1991 Springer)
Fig.18&&Laves-phase particles in a 10%Cr steel exposed at 600°C for 8354 h in the undeformed thread and the gauge length.
Fig.19&&SEM images of creep damage in the P91 steel after creep at 600°C for 113 and 431 h 7 mm from the fracture surface: BSE- SE-mode. (Reproduced with permission from Ref. [], Copyright 2010 Elsevier)
Tab.2&&The change of room temperature impact toughness in P92 steel after tempering at 760°C for 2 h
Fig.20&&BSE images of the P92 steels before and after aging at 760°C for 2 h.
Fig.21&&Two possible models of the Z-phase nucleation.
Fig.22&&12%CrNbN experimental steel after 650°C/1000 h. (Reproduced from Ref. [])
Fig.23&&TEM images of a FeTa Laves-phase strengthened steel, Ta7Cr (1%Ta, 7%Cr, in wt.%): as heat-treated in Laves-phase pinning subgrains during creep. (Reproduced with permission from Ref. [], Copyright 1976 Springer)
Cerjak H, Hofer P, Schaffernak B. The influence of microstructural aspects on the service behaviour of advanced power plant steels. ISIJ International , ): 874–888
Masuyama F. History of power plants and progress in heat resistant steels. ISIJ International , ): 612–625
Maruyama K, Sawada K, Koike J. Strengthening mechanisms of creep resistant tempered martensitic steel. ISIJ International , ): 641–653
Agamennone R, Blum W, Gupta C, . Evolution of microstructure and deformation resistance in creep of tempered martensitic 9–12%Cr–2%W–5%Co steels. Acta Materialia , ):
Klueh R L, Nelson A T. Ferritic/martensitic steels for next-generation reactors. Journal of Nuclear Materials , –3): 37–52
Klueh R L, Alexander D J, Sokolov M A. Effect of chromium, tungsten, tantalum and boron on mechanical properties of 5–9Cr–WVTaB steels. Journal of Nuclear Materials , –3): 139–152
Abe F, Araki H, Noda T. The effect of tungsten on dislocation recovery and precipitation behavior of low-activation martensitic 9Cr steels. Metallurgical Transactions A , ):
Klueh R L, Alexander D J, Kenik E A. Development of low-chromium, chromium-tungsten steels for fusion. Journal of Nuclear Materials , –2): 11–23
van der Schaaf B, Gelles D S, Jitsukawa S, . Progress and critical issues of reduced activation ferritic/martensitic steel development. Journal of Nuclear Materials , –287: 52–59
Jitsukawa S, Tamura M, van der Schaaf B, . Development of an extensive database of mechanical and physical porperties for reduced-activation martensitic steel F82H. Journal of Nuclear Materials , –311: 179–186
Huang Q Y, Li J G, Chen Y X. Study of irradiation effects in China low activation martensitic steel CLAM. Journal of Nuclear Materials , –333: 268–272
Abe F, Nakazawa S. Microstructural evolution and creep behaviour of bainitic, martensitic and martensite-ferrite dual phase Cr–2W steels. Materials Science and Technology , ):
Liu X Y, Fujita T. Effect of chromium content on creep rupture properties of a high chromium ferritic heat resisting steel. ISIJ International , ): 680–686
Gustafson A, Agren J. Possible effect of Co on coarsening of M23C6 carbide and Orowan stress in a 9% Cr Steel. ISIJ International , ): 356–360
Abe F. Behavior of boron in 9Cr heat resistant steel during heat treatment and creep deformation. Key Engineering Materials , –346: 569–572
Abe F, Semba H, Sakuraya T. Effect of boron on microstructure and creep deformation behavior of tempered martensitic 9Cr steel. Materials Science Forum , –543:
Hattestrand M, Andren H O. Boron distribution in 9–12% chromium steels. Materials Science and Engineering A , ): 33–37
Ennis P J, Quadakkers J W. The steam oxidation resistance of 9–12% Cr steels. In: Lecomte-Beckers J, Carton M, Schubert F, ., eds. Materials for Advanced Power Engineering 2002: Proceedings of the 7th Liege Conference , –1142
Ishitsuka T, Inoue Y, Ogawa H.Effect of silicon on the steam oxidation resistance of a 9% Cr heat resistant steel. Oxidation of Metals , ): 125–142
Aghajani A, Somsen C, Eggeler G. On the effect of long-term creep on the microstructure of a 12% chromium tempered martensite ferritic steel. Acta Materialia , ):
Aghajani A, Richter F, Somsen C, . On the formation and growth of Mo-rich Laves-phase particles during long-term creep of a 12% chromium tempered martensite ferritic steel. Scripta Materialia , ):
Hosoi Y, Wade N, Kunimitsu S, . Precipitation behavior of Laves-phase and its effect on toughness of 9Cr–2Mo ferritic-martensitic steel. Journal of Nuclear Materials , –143: 461–467
Abe F, Taneike M, Sawada K. Alloy design of creep resistant 9Cr steel using a dispersion of nano-sized carbonitrides. International Journal of Pressure Vessels and Piping , –2): 3–12
Yoshizawa M, Igarashi M. Long-term creep deformation characteristics of advanced ferritic steels for USC power plants. International Journal of Pressure Vessels and Piping , –2): 37–43
Kostka A, Tak K G, Hellmig R J, . On the contribution of carbides and micrograin boundaries to the creep strength of tempered martensite ferritic steels. Acta Materialia , ): 539–550
Ghassemi Armaki H, Chen R P, Maruyama K, . Creep behavior and degradation of subgrain structures pinned by nanoscale precipitates in strength-enhanced 5 to 12% Cr ferritic steels. Metallurgical and Materials Transactions A , ):
Blum W. In: Mughrabi H, ed. Plastic Deformation and Fracture of Materials . In: Cahn R W, Haasen P, Kramer E J, eds. Materials Science and Technology (Volumn. 6). Weinheim: VCH , –405
Eggeler G, Blum W. Coarsening of the dislocation-structure after stress reduction during creep of NaCl single-crystals. Philosophical Magazine , ):
Sawada K, Taneike M, Kimura K, . In situ observation of recovery of lath structure in 9% chromium creep resistant steel. Materials Science and Technology , ): 739–742
Kimura K, Kushima H, Abe F, . Inherent creep strength and long term creep strength properties of ferritic steels. Materials Science and Engineering A , –236:
Kimura K, Toda Y, Kushima H, . Creep strength of high chromium steel with ferrite matrix. International Journal of Pressure Vessels and Piping , ): 282–288
Panait C G, Bendick W, Fuchsmann A, . Study of the microstructure of the Grade 91 steel after more than 100,000 h of creep exposure at 600°C. International Journal of Pressure Vessels and Piping , ): 326–335
Abe F. Bainitic and martensitic creep-resistant steels. Current Opinion in Solid State and Materials Science , –4): 305–311
Hu P, Yan W, Sha W, . Microstructure evolution of a 10Cr heat-resistant steel during high temperature creep. Journal of Materials Science & Technology , ): 344–351
Sawada K, Maruyama K, Hasegawa Y, . Creep life assessment of high chromium ferritic steels by recovery of martensitic lath structure. Key Engineering Materials , –174: 109–114
Abe F, Nakazawa S, Araki H, . The role of microstructural instability on creep-behavior of a martensitic 9Cr–2W steel. Metallurgical Transactions A , ): 469–477
Dimmler G, Weinert P, Kozeschnik E, . Quantification of the Laves-phase in advanced 9–12% Cr steels using a standard SEM. Materials Characterization , ): 341–352
Eggeler G, Nilsvang N, Ilschner B. Microstructural changes in a 12%Cr steel during creep. Steel Research , ): 97–103
Eggeler G, Earthman J C, Nilsvang N, . Microstructural study of creep rupture in a 12% chromium ferritic steel. Acta Metallurgica , ): 49–60
Dronhofer A, Pesicka J, Dlouhy A, . On the nature of internal interfaces in tempered martensite ferritic steels. Zeitschrift fur Metallkunde , ): 511–520
Tak K-G, Schulz U, Eggeler G. On the effect of micrograin crystallography on creep of FeCr alloys. Materials Science and Engineering A , –511: 121–129
Pesicka J, Kuzel R, Dronhofer A, . The evolution of dislocation density during heat treatment and creep of tempered martensite ferritic steels. Acta Materialia , ):
Pesicka J, Dronhofer A, Eggeler G. Free dislocations and boundary dislocations in tempered martensite ferritic steels. Materials Science and Engineering A , –389: 176–180
Keller C, Margulies M M, Hadjem-Hamouche Z, . Influence of the temperature on the tesile behaviour of a modified 9Cr–1Mo T91 martensitic steel. Materials Science and Engineering A , –25):
Qin Y, G?tz G, Blum W. Subgrain structure during annealing and creep of the cast martensitic Cr-steel G-X12CrMoWVNbN 10-1-1. Materials Science and Engineering A , –2): 211–215
Blum W, G?tz G. Evolution of dislocation structure in martensitic steels: the subgrain size as a sensor for creep strain and residual creep life. Steel Research , ): 274–278
Hald J, Korcakova L. Precipitate stability in creep resistant ferritic steels — Experimental investigations and modelling. ISIJ International , ): 420–427
Polcik P, Sailer T, Blum W, . On the microstructural development of the tempered martensitic Cr-steel P 91 during long-term creep — a comparison of data. Materials Science and Engineering A , –2): 252–259
Panait C G, Zielińska-Lipiec A, Koziel T, . Evolution of dislocation density, size of subgrains and MX-type precipitatesin a P91 steel during creep and during thermal ageing at 600°C for more than 100,000 h. Materials Science and Engineering A , –17):
Eggeler G. The effect of long-term creep on particle coarsening in tempered martensite ferritic steels. Acta Metallurgica , ):
Sawada K, Taneike M, Kimura K, . Effect of nitrogen content on microstructural aspects and creep behavior in extremely low carbon 9Cr heat-resistant steel. ISIJ International , ):
Ghassemi-Armaki H, Chen R P, Maruyama K, . Static recovery of tempered lath martensite microstructures during long-term aging in 9–12% Cr heat resistant steels. Materials Letters , ):
Abe F. Effect of quenching, tempering, and cold rolling on creep deformation behavior of a tempered martensitic 9Cr–1W steel. Metallurgical Transactions A , ): 913–925
Abe F, Nakazawa S. The effect of tungsten on creep — behavior of tempered martensitic 9Cr steels. Metallurgical Transactions A , ):
Aghajani A, Somsen Ch, Pesicka J, . Microstructural evolution in T24, a modified 2(1/4)Cr–1Mo steel during creep after different heat treatments. Materials Science and Engineering A , –511: 130–135
Bendick W, Gabrel J, Hahn B, . New low alloy heat resistant ferritic steels T/P23 and T/P24 for power plant application. International Journal of Pressure Vessels and Piping , –2): 13–20
Bhandarkar M D, Bhat M S, Parker E R, . Creep and fracture of a Laves-phase strengthened ferritic alloy. Metallurgical Transactions A , ): 753–760
Cui J, Kim I-S, Kang C-Y, . Creep stress effect on the precipitation behavior of Laves-phase in Fe–10%Cr–6%W alloys. ISIJ International , ): 368–371
Sawada K, Takeda M, Maruyama K, . Effect of W on recovery of lath structure during creep of high chromium martensitic steels. Materials Science and Engineering A , ): 19–25
Kne?evi? V, Balun J, Sauthoff G, . Design of martensitic/ferritic heat-resistant steels for application at 650°C with supporting thermodynamic modelling. Materials Science and Engineering A , –2): 334–343
Li Q. Precipitation of Fe2W Laves-phase and modeling of its direct influence on the strength of a 12Cr–2W steel. Metallurgical and Materials Transactions A , ): 89–97
Porter D A, Easterling K E. Phase Transformation in Metals and Alloys . New York: Van Nostrand Reinhold, –332
Hofer P, Cerjak H, Warbichler P. Quantitative evaluation of precipitates in the martensitic cast steel G-X12CrMoWVNbN10-1-1. In: Lecomte-Beckers J, Schubert F, Ennis P J, eds. 6th Liège- Conference Materials for Advanced Power Engineering , 1998, Part I, 549–557
Foldyna V, Kubon Z, Filip M, . Evaluation of structural stability and creep resistance of 9–12% Cr steel. Steel Research , ): 375–381
Kubon Z, Foldyna V. The effect of Nb, V, N and Al on creep rupture strength of 9–12% Cr steel. Steel Research , ): 389–393
Hattestrand M, Andren H O. Microstructural development during ageing of an 11% chromium steel alloyed with copper. Materials Science and Engineering A , –2): 94–101
Hu P, Yan W, Sha W, . Study on Laves-phase in an advanced heat-resistant steel. Frontiers of Materials Science in China , ): 434–441
Janovec J, Richarz B, Grabke H J. Some aspects of intermetallic phase precipitation in a 12% Cr-steel. Scripta Metallurgica et Materialia , ): 295–300
Hattestrand M, Schwind M, Andren H O. Microanalysis of two creep resistant 9–12% chromium steels. Materials Science and Engineering A , ): 27–36
Lundin L M. Direct measurement of carbon solubility in the intermetallic (Fe, Cr)2(Mo, W) Laves-phase using atom-probe field-ion microscopy. Scripta Materialia , ): 741–747
Hosoi Y, Wade N, Kunimitsu S, . Precipitation behavior of Laves-phase and its effect on toughness of 9Cr–2Mo ferritic martensitic steel. Journal of Nuclear Materials , –143: 461–467
Lee J S, Armaki H G, Maruyama K, . Causes of breakdown of creep strength in 9Cr–1.8W–0.5Mo–V–NbSteel. Materials Science and Engineering A , –2): 270–275
Kunimitsu S, You Y, Kasuya N, . Effect of thermo-mechanical treatment on toughness of 9Cr–W ferritic-martensitic steels during aging. Journal of Nuclear Materials , –181: 689–692
Schafer L. Tensile and impact behavior of the reduced-activation steels OPTIFER and F82H mod. Journal of Nuclear Materials , –287: 707–710
Tamura M, Hayakawa H, Yoshitake A, . Phase stability of reduced activation ferritic steel: 8%Cr–2%W–0.2%V–0.04%Ta–Fe. Journal of Nuclear Materials , –157: 620–625
Ishii T, Fukaya K, Nishiyama Y, . Low cycle fatigue properties of 8Cr–2WVTa ferritic steel at elevated temperatures. Journal of Nuclear Materials , 3):
Fernandez P, Hernandez-Mayoral M, Lapena J, . Correlation between microstructure and mechanical properties of reduced activation modified F-82H ferritic martensitic steel Materials. Materials Science and Technology , ):
Miyata K, Sawaragi Y, Okada H, . Microstructural evolution of a 12Cr–2W–Cu–V–Nb steel during three-year service exposure. ISIJ International , ):
Tsuchida Y, Okamoto K, Tokunaga Y. Improvement of creep rupture strength of high Cr ferritic steel by addition of W. ISIJ International , ): 317–323
Sato M, Hasegawa Y, Muraki T, . Correlation between creep strength and stability of subgrain structure in high chromium ferritic heat resistant steel with tungsten. Journal of the Japan Institute of Metals , 1–374
Muneki S, Igarashi M, Abe F. Creep characteristics of precipitation hardened carbon free martensitic alloys. Key Engineering Materials , –174: 491–498
Abe F. Creep rates and strengthening mechanisms in tungsten-trengthened 9Cr steels. Materials Science and Engineering A , –321: 770–773
Danielsen H K, Hald J. Behaviour of Z phase in 9–12%Cr steels. Energy Materials , ): 49–57
Jack D H, Jack K H. Structure of Z-phase NbCrN. Journal of the Iron and Steel Institute , : 790–792
Andren H O, Henjered A, Karlsson L. In: Stainless Steel 84. London: The Institute of Metals ,
Hald J, Danielsen H K. Z-phase strengthened martensitic 9–12%Cr steels. In: Proceedings of 3rd Symposium on Heat Resistant Steels and Alloys for High Efficiency USC Power Plants, National Institute for Materials Science , Tsukuba, Japan, 2009
Danielsen H K, Hald J.A thermodynamic model of the Z-phase Cr(V, Nb)N. Calphad , ): 505–514
Danielsen H K, Hald J, Somers M A J. Atomic resolution imaging of precipitate transformation from cubic TaN to tetragonal CrTaN. Scripta Materialia , ): 261–264
Danielsen H K, Hald J. On the nucleation and dissolution process of Z-phase Cr(V, Nb)N in martensitic 12%Cr steels. Materials Science and Engineering A , –2): 169–177
Sawada K, Kushima H, Kimura K, . TTP diagrams of Z phase in 9–12% Cr heat-resistant steels. ISIJ International , ): 733–739
Cipolla L, Danielsen H K, Venditti D, . Conversion of MX nitrides to Z-phase in a martensitic 12% Cr steel. Acta Materialia , ): 669–679
Hald J. Microstructure and long-term creep properties of 9–12% Cr steels. International Journal of Pressure Vessels and Piping , –2): 30–37
Danielsen H K, Hald J. Tantalum-containing Z-phase in 12%Cr martensitic steels. Scripta Materialia , ): 811–813
Golpayegani A, Andrén H O, Danielsen H, . A study on Z-phase nucleation in martensitic chromium steels. Materials Science and Engineering A , –2): 310–318
Yin F-S, Jung W-S, Chung S-H. Microstructure and creep rupture characteristics of an ultra-low carbon ferritic/martensitic heat-resistant steel. Scripta Materialia , ): 469–472
Strang A, Vodarek V. Z phase formation in martensitic 12CrMoVNb steel. Materials Science and Technology , ): 552–556
de Castro V, Leguey T, Munoz A, . Mechanical and microstructural behaviour of Y2O3 ODS EUROFER 97. Journal of Nuclear Materials , –37(Part A): 196–201
Olier P, Bougault A, Alamo A, . Effects of the forming processes and Y2O3 content on ODS-Eurofer mechanical properties. Journal of Nuclear Materials , –388: 561–563
Klimenkov M, Lindau R, Moslang A. New insights into the structure of ODS particles in the ODS-Eurofer alloy. Journal of Nuclear Materials , –388: 553–556
Schaeublin R, Leguey T, Spatig P, . Microstructure and mechanical properties of two ODS ferritic/martensitic steels. Journal of Nuclear Materials , –311: 778–782
Yu G, Nita N, Baluc N. Thermal creep behaviour of the EUROFER 97 RAFM steel and two European ODS EUROFER 97 steels. Fusion Engineering and Design , :
Liu F, Fors D H R, Golpayegani A, . Effect of boron on carbide coarsening at 873 K (600°C) in 9–12% chromium steels. Metallurgical and Materials Transactions A , ):
Taneike M, Abe F, Sawada K. Creep-strengthening of steel at high temperatures using nano-sized carbonitride dispersions. Nature , 46): 294–296
Hald J, Straub S. In: Lecomte-Beckers J, ., eds. Materials for Advanced Power Engineering . Julich: Forschungszentrum Julich GmbH,
Taneike M, Sawada K, Abe F. Effect of carbon concentration on precipitation behavior of M23C6 carbides and MX carbonitrides in martensitic 9Cr steel during heat treatment. Metallurgical and Materials Transactions A , ):
Grobner P J, Bi?s V, Sponseller D L. Delta ferritic heat-resistant chromium-molybdenum steels with improved rupture strength. Metallurgical and Materials Transactions A , ): 909–917
Toda Y, Iijima M, Kushima H, . Effects of Ni and heat treament on long-term creep strength of precipitation strengthened 15Cr ferritic heat resistant steels. ISIJ International , ):
Xiaodong LI,Xiaotie DENG,Shanfeng ZHU,Feng WANG,Haoran XIE. [J]. Front. Comput. Sci., ): 596-608.
Zhen-Tao YU,Ming-Hua ZHANG,Yu-Xing TIAN,Jun CHENG,Xi-Qun MA,Han-Yuan LIU,Chang WANG. [J]. Front. Mater. Sci., ): 219-229.
Ya-Ming WANG,Jun-Wei GUO,Yun-Feng WU,Yan LIU,Jian-Yun CAO,Yu ZHOU,De-Chang JIA. [J]. Front. Mater. Sci., ): 295-306.
Zhi-Wen CHEN, Chan-Hung SHEK, C. M. Lawrence WU, Joseph K. L. LAI. [J]. Front Mater Sci, ): 203-226.
Dong-Mei ZHANG, Zhen-Yu YIN, Pierre-Yves HICHER, Hong-Wei HUANG. [J]. Front Struc Civil Eng, ): 137-153.
Wei JIN, Jian JU, Hoi Lut HO, Yeuk Lai HOO, Ailing ZHANG. [J]. Front Optoelec, ): 3-24.
Kirsten BOBZIN, Lidong ZHAO, Nils KOPP, Thomas WARDA. [J]. Front Mech Eng, ): 371-375.
Guanglan LIAO, Haibo ZUO, Xuan JIANG, Xuefeng YANG, Tielin SHI. [J]. Front Mech Eng, ): 394-400.
Fan FAN, Cunpeng ZHAO, Hongmin REN, Lihua LV, Baoliang TIAN, Guoshu WEI. [J]. Front Agric Chin, ): 570-575.
Kirsten BOBZIN, Lidong ZHAO, Thomas SCHLAEFER, Thomas WARDA. [J]. Front Mech Eng, ): 392-396.
Hai-Jun LEI, Bin LIU, Dai-Ning FANG, . [J]. Front. Mater. Sci., ): 234-238.
Jian-Qiang ZHANG, Bing-Yin YAO, Tai-Jiang LI, Fu-Guang LIU, Ying-Lin ZHANG, . [J]. Front. Mater. Sci., ): 210-216.
Shucheng YANG, Yanling HE, Charles CHOU, Pengxiang ZHANG, Dongqi WANG, Yonghong LIU, . [J]. Front.Environ.Sci.Eng., ): 142-149.
Ning CAO, Zhen-yi FEI, Yong-xin QI, Wen-wen CHEN, Lu-lu SU, Qi WANG, Mu-sen LI, . [J]. Front. Mater. Sci., ): 409-414.
Ping HU, Wei YAN, Wei WANG, Yi-yin SHAN, Ke YANG, Wei SHA, Zhan-li GUO, . [J]. Front. Mater. Sci., ): 434-441.
& 2014 Higher Education Press, All Rights Reserved. Powered by Beijing Magtech Co. Ltd
Service: 010- (Technology); 010- (Subscription) E-mail: customercenter@}

我要回帖

更多关于 materials 的文章

更多推荐

版权声明:文章内容来源于网络,版权归原作者所有,如有侵权请点击这里与我们联系,我们将及时删除。

点击添加站长微信